Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
ACS Appl Bio Mater ; 6(9): 3790-3797, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37647213

RESUMO

There is an urgent need for simple and non-invasive identification of live neural stem/progenitor cells (NSPCs) in the developing and adult brain as well as in disease, such as in brain tumors, due to the potential clinical importance in prognosis, diagnosis, and treatment of diseases of the nervous system. Here, we report a luminescent conjugated oligothiophene (LCO), named p-HTMI, for non-invasive and non-amplified real-time detection of live human patient-derived glioblastoma (GBM) stem cell-like cells and NSPCs. While p-HTMI stained only a small fraction of other cell types investigated, the mere addition of p-HTMI to the cell culture resulted in efficient detection of NSPCs or GBM cells from rodents and humans within minutes. p-HTMI is functionalized with a methylated imidazole moiety resembling the side chain of histidine/histamine, and non-methylated analogues were not functional. Cell sorting experiments of human GBM cells demonstrated that p-HTMI labeled the same cell population as CD271, a proposed marker for stem cell-like cells and rapidly migrating cells in glioblastoma. Our results suggest that the LCO p-HTMI is a versatile tool for immediate and selective detection of neural and glioma stem and progenitor cells.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Células-Tronco Neurais , Adulto , Humanos , Glioblastoma/diagnóstico , Encéfalo , Neoplasias Encefálicas/diagnóstico , Adapaleno
2.
J Alzheimers Dis ; 93(2): 411-419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37038807

RESUMO

BACKGROUND: Early detection of amyloid-ß (Aß) aggregates is a critical step to improve the treatment of Alzheimer's disease (AD) because neuronal damage by the Aß aggregates occurs before clinical symptoms are apparent. We have previously shown that luminescent conjugated oligothiophenes (LCOs), which are highly specific towards protein aggregates of Aß, can be used to fluorescently label amyloid plaque in living rodents. OBJECTIVE: We hypothesize that the LCO can be used to target gadolinium to the amyloid plaque and hence make the plaque detectable by T1-weighted magnetic resonance imaging (MRI). METHODS: A novel LCO-gadolinium construct was synthesized to selectively bind to Aß plaques and give contrast in conventional T1-weighted MR images after intravenous injection in Tg-APPSwe mice. RESULTS: We found that mice with high plaque-burden could be identified using the LCO-Gd constructs by conventional MRI. CONCLUSION: Our study shows that MR imaging of amyloid plaques is challenging but feasible, and hence contrast-mediated MR imaging could be a valuable tool for early AD detection.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Placa Amiloide/patologia , Gadolínio/metabolismo , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Imageamento por Ressonância Magnética/métodos , Modelos Animais de Doenças , Encéfalo/patologia
3.
Chemistry ; 28(62): e202201557, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-35950816

RESUMO

Protein deposits composed of specific proteins or peptides are associated with several neurodegenerative diseases and fluorescent ligands able to detect these pathological hallmarks are vital. Here, we report the synthesis of a class of thiophene-based ligands, denoted proteophenes, with different amino acid side-chain functionalities along the conjugated backbone, which display selectivity towards specific disease-associated protein aggregates in tissue sections with Alzheimer's disease (AD) pathology. The selectivity of the ligands towards AD associated pathological hallmarks, such as aggregates of the amyloid-ß (Aß) peptide or tau filamentous inclusions, was highly dependent on the chemical nature of the amino acid functionality, as well as on the location of the functionality along the pentameric thiophene backbone. Finally, the concept of synthesizing donor-acceptor-donor proteophenes with distinct photophysical properties was shown. Our findings provide the structural and functional basis for the development of new thiophene-based ligands that can be utilized for optical assignment of different aggregated proteinaceous species in tissue sections.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Tiofenos/química , Aminoácidos , Corantes Fluorescentes/química , Peptídeos beta-Amiloides/química , Ligantes , Proteínas tau
4.
ChemistryOpen ; 9(11): 1100-1108, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33163327

RESUMO

Control over the photophysical properties and molecular organization of π-conjugated oligothiophenes is essential to their use in organic electronics. Herein we synthesized and characterized a variety of anionic pentameric oligothiophenes with different substitution patterns of L- or D-tyrosine at distinct positions along the thiophene backbone. Spectroscopic, microscopic, and theoretical studies of L- or D-tyrosine substituted pentameric oligothiophene conjugates revealed the formation of optically active π-stacked self-assembled aggregates under acid conditions. The distinct photophysical characteristics, as well as the supramolecular structures of the assemblies, were highly influenced by the positioning of the L- or D-tyrosine moieties along the thiophene backbone. Overall, the obtained results clearly demonstrate how fundamental changes in the position of the enantiomeric side-chain functionalities greatly affect the optical properties as well as the architecture of the self-assembled supramolecular structures.

5.
Sci Rep ; 8(1): 3108, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449697

RESUMO

Efficient use of plant-derived materials requires enabling technologies for non-disruptive composition analysis. The ability to identify and spatially locate polysaccharides in native plant tissues is difficult but essential. Here, we develop an optical method for cellulose identification using the structure-responsive, heptameric oligothiophene h-FTAA as molecular fluorophore. Spectrophotometric analysis of h-FTAA interacting with closely related glucans revealed an exceptional specificity for ß-linked glucans. This optical, non-disruptive method for stereochemical differentiation of glycosidic linkages was next used for in situ composition analysis in plants. Multi-laser/multi-detector analysis developed herein revealed spatial localization of cellulose and structural cell wall features such as plasmodesmata and perforated sieve plates of the phloem. Simultaneous imaging of intrinsically fluorescent components revealed the spatial relationship between cell walls and other organelles, such as chloroplasts and lignified annular thickenings of the trachea, with precision at the sub-cellular scale. Our non-destructive method for cellulose identification lays the foundation for the emergence of anatomical maps of the chemical constituents in plant tissues. This rapid and versatile method will likely benefit the plant science research fields and may serve the biorefinery industry as reporter for feedstock optimization as well as in-line monitoring of cellulose reactions during standard operations.


Assuntos
Celulose/química , Glucanos/química , Parede Celular/química , Celulose/isolamento & purificação , Celulose/metabolismo , Glucanos/metabolismo , Pectinas/química , Floema/química , Plantas/química , Plasmodesmos/química , Polissacarídeos/química , Estereoisomerismo , Tiofenos/análise , Tiofenos/metabolismo , Xilanos/química , beta-Glucanas/química
6.
ACS Omega ; 3(11): 15066-15075, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458172

RESUMO

Conducting polymers are routinely used in optoelectronic biomaterials, but large polymer polydispersity and poor aqueous compatibility complicate integration with biomolecular templates and development of discrete and defined supramolecular complexes. Herein, we report on a chiro-optical hybrid material generated by the self-assembly of an anionic peptide and a chemically defined cationic pentameric thiophene in aqueous environment. The peptide acts as a stereochemical template for the thiophene and adopts an α-helical conformation upon association, inducing optical activity in the thiophene π-π* transition region. Theoretical calculations confirm the experimentally observed induced structural changes and indicate the importance of electrostatic interactions in the complex. The association process is also probed at the substrate-solvent interface using peptide-functionalized gold nanoparticles, indicating that the peptide can also act as a scaffold when immobilized, resulting in structurally well-defined supramolecular complexes. The hybrid complex could rapidly be assembled, and the kinetics of the formation could be monitored by utilizing the local surface plasmon resonance originating from the gold nanoparticles. We foresee that these findings will aid in designing novel hybrid materials and provide a possible route for the development of functional optoelectronic interfaces for both biomaterials and energy harvesting applications.

7.
J Vis Exp ; (128)2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-29155738

RESUMO

Proteins that deposit as amyloid in tissues throughout the body can be the cause or consequence of a large number of diseases. Among these we find neurodegenerative diseases such as Alzheimer's and Parkinson's disease afflicting primarily the central nervous system, and systemic amyloidosis where serum amyloid A, transthyretin and IgG light chains deposit as amyloid in liver, carpal tunnel, spleen, kidney, heart, and other peripheral tissues. Amyloid has been known and studied for more than a century, often using amyloid specific dyes such as Congo red and Thioflavin T (ThT) or Thioflavin (ThS). In this paper, we present heptamer-formyl thiophene acetic acid (hFTAA) as an example of recently developed complements to these dyes called luminescent conjugated oligothiophenes (LCOs). hFTAA is easy to use and is compatible with co-staining in immunofluorescence or with other cellular markers. Extensive research has proven that hFTAA detects a wider range of disease associated protein aggregates than conventional amyloid dyes. In addition, hFTAA can also be applied for optical assignment of distinct aggregated morphotypes to allow studies of amyloid fibril polymorphism. While the imaging methodology applied is optional, we here demonstrate hyperspectral imaging (HIS), laser scanning confocal microscopy and fluorescence lifetime imaging (FLIM). These examples show some of the imaging techniques where LCOs can be used as tools to gain more detailed knowledge of the formation and structural properties of amyloids. An important limitation to the technique is, as for all conventional optical microscopy techniques, the requirement for microscopic size of aggregates to allow detection. Furthermore, the aggregate should comprise a repetitive ß-sheet structure to allow for hFTAA binding. Excessive fixation and/or epitope exposure that modify the aggregate structure or conformation can render poor hFTAA binding and hence pose limitations to accurate imaging.


Assuntos
Amiloide/química , Microscopia Confocal/métodos , Imagem Óptica/métodos , Coloração e Rotulagem/métodos , Tiofenos/química , Corantes/química , Humanos
8.
Chemistry ; 23(67): 17127-17135, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28926133

RESUMO

The accumulation of protein aggregates is associated with many devastating neurodegenerative diseases and the development of molecular ligands able to detect these pathological hallmarks is essential. Here, the synthesis of thiophene based optical ligands, denoted bi-thiophene-vinyl-benzothiazoles (bTVBTs) that can be utilized for selective assignment of tau aggregates in brain tissue with Alzheimer's disease (AD) pathology is reported. The ability of the ligands to selectively distinguish tau deposits from the other AD associated pathological hallmark, senile plaques consisting of aggregated amyloid-ß (Aß) peptide, was reduced when the chemical composition of the ligands was altered, verifying that specific molecular interactions between the ligands and the aggregates are necessary for the selective detection of tau deposits. Our findings provide the structural and functional basis for the development of new fluorescent ligands that can distinguish between aggregated proteinaceous species consisting of different proteins. In addition, the bTVBT scaffold might be utilized to create powerful practical research tools for studying the underlying molecular events of tau aggregation and for creating novel agents for clinical imaging of tau pathology in AD.


Assuntos
Doença de Alzheimer/metabolismo , Benzotiazóis/química , Corantes Fluorescentes/química , Tiofenos/química , Proteínas tau/química , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Benzotiazóis/síntese química , Encéfalo/metabolismo , Corantes Fluorescentes/síntese química , Humanos , Ligantes , Imagem Óptica/métodos , Placa Amiloide/química , Placa Amiloide/metabolismo , Agregados Proteicos , Tiofenos/síntese química , Proteínas tau/metabolismo
9.
Cytometry A ; 91(8): 760-766, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27077940

RESUMO

In vitro and in vivo behavior of nanoparticles (NPs) is often studied by tracing the NPs with fluorescent dyes. This requires stable incorporation of dyes within the NPs, as dye leakage may give a wrong interpretation of NP biodistribution, cellular uptake, and intracellular distribution. Furthermore, NP labeling with trace amounts of dye should not alter NP properties such as interactions with cells or tissues. To allow for versatile NP studies with a variety of fluorescence-based assays, labeling of NPs with different dyes is desirable. Hence, when new dyes are introduced, simple and fast screening methods to assess labeling stability and NP-cell interactions are needed. For this purpose, we have used a previously described generic flow cytometry assay; incubation of cells with NPs at 4 and 37°C. Cell-NP interaction is confirmed by cellular fluorescence after 37°C incubation, and NP-dye retention is confirmed when no cellular fluorescence is detected at 4°C. Three different NP-platforms labeled with six different dyes were screened, and a great variability in dye retention was observed. Surprisingly, incorporation of trace amounts of certain dyes was found to reduce or even inhibit NP uptake. This work highlights the importance of thoroughly evaluating every dye-NP combination before pursuing NP-based applications. © 2016 International Society for Advancement of Cytometry.


Assuntos
Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Animais , Transporte Biológico/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Citometria de Fluxo/métodos , Fluorescência , Humanos , Ratos , Coloração e Rotulagem/métodos , Distribuição Tecidual/fisiologia
10.
Chemistry ; 22(51): 18335-18338, 2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-27767229

RESUMO

Deposits comprised of amyloid-ß (Aß) are one of the pathological hallmarks of Alzheimer's disease (AD) and small hydrophobic ligands targeting these aggregated species are used clinically for the diagnosis of AD. Herein, we observed that anionic oligothiophenes efficiently displaced X-34, a Congo Red analogue, but not Pittsburgh compound B (PIB) from recombinant Aß amyloid fibrils and Alzheimer's disease brain-derived Aß. Overall, we foresee that the oligothiophene scaffold offers the possibility to develop novel high-affinity ligands for Aß pathology only found in human AD brain, targeting a different site than PIB.


Assuntos
Alcenos/química , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Compostos de Anilina/química , Benzoatos/química , Encéfalo/patologia , Tiazóis/química , Tiofenos/metabolismo , Alcenos/metabolismo , Peptídeos beta-Amiloides/metabolismo , Compostos de Anilina/metabolismo , Benzoatos/metabolismo , Humanos , Tomografia por Emissão de Pósitrons , Tiazóis/metabolismo , Tiofenos/química
11.
Sci Rep ; 6: 35578, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27759105

RESUMO

Enabling technologies for efficient use of the bio-based feedstock are crucial to the replacement of oil-based products. We investigated the feasibility of luminescent conjugated oligothiophenes (LCOs) for non-destructive, rapid detection and quality assessment of lignocellulosic components in complex biomass matrices. A cationic pentameric oligothiophene denoted p-HTEA (pentamer hydrogen thiophene ethyl amine) showed unique binding affinities to cellulose, lignin, hemicelluloses, and cellulose nanofibrils in crystal, liquid and paper form. We exploited this finding using spectrofluorometric methods and fluorescence confocal laser scanning microscopy, for sensitive, simultaneous determination of the structural and compositional complexities of native lignocellulosic biomass. With exceptional photostability, p-HTEA is also demonstrated as a dynamic sensor for real-time monitoring of enzymatic cellulose degradation in cellulolysis. These results demonstrate the use of p-HTEA as a non-destructive tool for the determination of cellulose, hemicellulose and lignin in complex biomass matrices, thereby aiding in the optimization of biomass-converting technologies.


Assuntos
Celulose/análise , Misturas Complexas/química , Lignina/análise , Polissacarídeos/análise , Tiofenos/química , Biomassa , Técnicas Biossensoriais , Estudos de Viabilidade , Medições Luminescentes , Nanofibras
12.
ACS Med Chem Lett ; 7(4): 368-73, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27096043

RESUMO

Three oligothiophenes were evaluated as PET ligands for the study of local and systemic amyloidosis ex vivo using tissue from patients with amyloid deposits and in vivo using healthy animals and PET-CT. The ex vivo binding studies revealed that all three labeled compounds bound specifically to human amyloid deposits. Specific binding was found in the heart, kidney, liver, and spleen. To verify the specificity of the oligothiophenes toward amyloid deposits, tissue sections with amyloid pathology were stained using the fluorescence exhibited by the compounds and evaluated with multiphoton microscopy. Furthermore, a in vivo monkey PET-CT study showed very low uptake in the brain, pancreas, and heart of the healthy animal indicating low nonspecific binding to healthy tissue. The biological evaluations indicated that this is a promising group of compounds for the visualization of systemic and localized amyloidosis.

13.
NPJ Biofilms Microbiomes ; 2: 16024, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28721253

RESUMO

Extracellular matrix (ECM) is the protein- and polysaccharide-rich backbone of bacterial biofilms that provides a defensive barrier in clinical, environmental and industrial settings. Understanding the dynamics of biofilm formation in native environments has been hindered by a lack of research tools. Here we report a method for simultaneous, real-time, in situ detection and differentiation of the Salmonella ECM components curli and cellulose, using non-toxic, luminescent conjugated oligothiophenes (LCOs). These flexible conjugated polymers emit a conformation-dependent fluorescence spectrum, which we use to kinetically define extracellular appearance of curli fibres and cellulose polysaccharides during bacterial growth. The scope of this technique is demonstrated by defining biofilm morphotypes of Salmonella enterica serovars Enteritidis and Typhimurium, and their isogenic mutants in liquid culture and on solid media, and by visualising the ECM components in native biofilms. Our reported use of LCOs across a number of platforms, including intracellular cellulose production in eukaryotic cells and in infected tissues, demonstrates the versatility of this optotracing technology, and its ability to redefine biofilm research.

14.
Front Chem ; 3: 58, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26501054

RESUMO

Molecular tools for fluorescent imaging of cells and their components are vital for understanding the function and activity of cells. Here, we report an imidazole functionalized pentameric oligothiophene, p-HTIm, that can be utilized for fluorescent imaging of cells. p-HTIm fluorescence in normal cells appeared in a peripheral punctate pattern partially co-localized with lysosomes, whereas a one-sided perinuclear Golgi associated localization of the dye was observed in malignant cells. The uptake of p-HTIm was temperature dependent and the intracellular target was reached within 1 h after staining. The ability of p-HTIm to stain cells was reduced when the imidazole side chain was chemically altered, verifying that specific imidazole side-chain functionalities are necessary for achieving the observed cellular staining. Our findings confirm that properly functionalized oligothiophenes can be utilized as fluorescent tools for vital staining of cells and that the selectivity toward distinct intracellular targets are highly dependent on the side-chain functionalities along the conjugated thiophene backbone.

15.
Chemistry ; 20(39): 12537-43, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25111601

RESUMO

A wide range of neurodegenerative diseases are characterized by the deposition of multiple protein aggregates. Ligands for molecular characterization and discrimination of these pathological hallmarks are thus important for understanding their potential role in pathogenesis as well as for clinical diagnosis of the disease. In this regard, luminescent conjugated oligothiophenes (LCOs) have proven useful for spectral discrimination of amyloid-beta (Aß) and tau neurofibrillary tangles (NFTs), two of the pathological hallmarks associated with Alzheimer's disease. Herein, the solvatochromism of a library of anionic pentameric thiophene-based ligands, as well as their ability to spectrally discriminate Aß and tau aggregates, were investigated. Overall, the results from this study identified distinct solvatochromic and viscosity-dependent behavior of thiophene-based ligands that can be applied as indices to direct the chemical design of improved LCOs for spectral separation of Aß and tau aggregates in brain tissue sections. The results also suggest that the observed spectral transitions of the ligands are due to their ability to conform by induced fit to specific microenvironments within the binding interface of each particular protein aggregate. We foresee that these findings might aid in the chemical design of thiophene-based ligands that are increasingly selective for distinct disease-associated protein aggregates.


Assuntos
Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/análise , Encéfalo/patologia , Substâncias Luminescentes , Agregação Patológica de Proteínas/diagnóstico , Tiofenos , Proteínas tau/análise , Doença de Alzheimer/patologia , Humanos , Ligantes , Substâncias Luminescentes/química , Imagem Óptica , Agregação Patológica de Proteínas/patologia , Tiofenos/química , Viscosidade
16.
Cytometry A ; 85(7): 628-35, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24500794

RESUMO

Fluorescent compounds capable of staining cells selectively without affecting their viability are gaining importance in biology and medicine. Recently, a new family of optical dyes, denoted luminescent conjugated oligothiophenes (LCOs), has emerged as an interesting class of highly emissive molecules for studying various biological phenomena. Properly functionalized LCOs have been utilized for selective identification of disease-associated protein aggregates and for selective detection of distinct cells. Herein, we present data on differential staining of various cell types, including cancer cells. The differential staining observed with newly developed pentameric LCOs is attributed to distinct side chain functionalities along the thiophene backbone. Employing flow cytometry and fluorescence microscopy we examined a library of LCOs for stainability of a variety of cell lines. Among tested dyes we found promising candidates that showed strong or moderate capability to stain cells to different extent, depending on target cells. Hence, LCOs with diverse imidazole motifs along the thiophene backbone were identified as an interesting class of agents for staining of cancer cells, whereas LCOs with other amino acid side chains along the backbone showed a complete lack of staining for the cells included in the study. Furthermore, for p-HTMI,a LCO functionalized with methylated imidazole moieties, the staining was dependent on the p53 status of the cells, indicating that the molecular target for the dye is a cellular component regulated by p53. We foresee that functionalized LCOs will serve as a new class of optical ligands for fluorescent classification of cells and expand the toolbox of reagents for fluorescent live imaging of different cells.


Assuntos
Citometria de Fluxo/métodos , Corantes Fluorescentes/química , Tiofenos/química , Linhagem Celular Tumoral , Células/classificação , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Medições Luminescentes , Células MCF-7 , Microscopia de Fluorescência , Células-Tronco Neoplásicas , Coloração e Rotulagem , Proteína Supressora de Tumor p53/metabolismo
17.
Open Med Chem J ; 7: 1-15, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23585822

RESUMO

Novel BACE-1 inhibitors with a hydroxyethylene central core have been developed. Modified P1´ and extended P1 substituents were incorporated with the aim to explore potential interactions with the S1´ and the S1-S3 pocket, respectively, of BACE-1. Inhibitors were identified displaying IC50 values in the nanomolar range, i.e. 69 nM for the most potent compound. Possible inhibitor interactions with the enzyme are also discussed.

19.
Bioorg Med Chem ; 15(22): 7184-202, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17845856

RESUMO

Several highly potent novel HCV NS3 protease inhibitors have been developed from two inhibitor series containing either a P2 trisubstituted macrocyclic cyclopentane- or a P2 cyclopentene dicarboxylic acid moiety as surrogates for the widely used N-acyl-(4R)-hydroxyproline in the P2 position. These inhibitors were optimized for anti HCV activities through examination of different ring sizes in the macrocyclic systems and further by exploring the effect of P4 substituent removal on potency. The target molecules were synthesized from readily available starting materials, furnishing the inhibitor compounds in good overall yields. It was found that the 14-membered ring system was the most potent in these two series and that the corresponding 13-, 15-, and 16-membered macrocyclic rings delivered less potent inhibitors. Moreover, the corresponding P1 acylsulfonamides had superior potencies over the corresponding P1 carboxylic acids. It is noteworthy that it has been possible to develop highly potent HCV protease inhibitors that altogether lack the P4 substituent. Thus the most potent inhibitor described in this work, inhibitor 20, displays a K(i) value of 0.41 nM and an EC(50) value of 9 nM in the subgenomic HCV replicon cell model on genotype 1b. To the best of our knowledge this is the first example described in the literature of a HCV protease inhibitor displaying high potency in the replicon assay and lacking the P4 substituent, a finding which should facilitate the development of orally active small molecule inhibitors against the HCV protease.


Assuntos
Ciclopentanos/farmacologia , Inibidores Enzimáticos/farmacologia , Compostos Macrocíclicos/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Ciclização , Ciclopentanos/síntese química , Ciclopentanos/química , Ácidos Dicarboxílicos/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Hepacivirus/enzimologia , Humanos , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/química , Modelos Moleculares , Conformação Molecular , Estereoisomerismo , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
20.
Bioorg Med Chem ; 14(15): 5136-51, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16675222

RESUMO

The HCV NS3 protease is essential for replication of the hepatitis C virus (HCV) and therefore constitutes a promising new drug target for anti-HCV therapy. Several potent and promising HCV NS3 protease inhibitors, some of which display low nanomolar activities, were identified from a series of novel inhibitors incorporating a trisubstituted cyclopentane dicarboxylic acid moiety as a surrogate for the widely used N-acyl-(4R)-hydroxyproline in the P2 position.


Assuntos
Antivirais/farmacologia , Ciclopentanos/farmacologia , Hepacivirus/efeitos dos fármacos , Inibidores de Serina Proteinase/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/síntese química , Antivirais/química , Cristalografia por Raios X , Ciclopentanos/síntese química , Ciclopentanos/química , Relação Dose-Resposta a Droga , Hepacivirus/enzimologia , Modelos Moleculares , Conformação Molecular , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/química , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA