Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Med ; 13(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39064253

RESUMO

Objectives: Photochemical systems are frequently recommended as an adjuvant treatment option in peri-implantitis therapy. The aim of the present study was to evaluate the efficacy of these treatment options, as well as a novel curcumin-based option, in a biofilm model on implants. Methods: Eighty dental implants were inoculated with an artificial biofilm of periodontal pathogens and placed in peri-implant pocket models. The following groups were analyzed: I, photodynamic therapy (PDT); II, PDT dye; III, curcumin/DMSO + laser; IV, curcumin/DMSO only; V, dimethyl sulfoxide (DMSO) only; VI, photothermal therapy (PTT); VII, PTT dye; VIII, control. After treatment, remaining bacterial loads were assessed microbiologically using quantitative real-time polymerase chain reaction analysis. Results: The PDT, PTT, and DMSO treatment methods were associated with statistically significant (p < 0.05) improvements in germ reduction in comparison with the other methods and the untreated control group. The mean percentage reductions were as follows: I (PDT) 93.9%, II (PDT dye) 62.9%, III (curcumin/DMSO + laser) 74.8%, IV (curcumin/DMSO only) 67.9%, V (DMSO) 89.4%, VI (PTT) 86.8%, and VII (PTT dye) 66.3%. Conclusions: The commercially available PDT and PTT adjuvant treatment systems were associated with the largest statistically significant reduction in periopathogenic bacteria on implant surfaces. However, activation with laser light at a suitable wavelength is necessary to achieve the bactericidal effects. The use of curcumin as a photosensitizer for 445 nm laser irradiation did not lead to any improvement in antibacterial efficacy in comparison with rinsing with DMSO solution alone.

2.
Antibiotics (Basel) ; 13(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38247613

RESUMO

Elimination of microbes in the root canal system is crucial for achieving long-term success in endodontic treatment. Further efforts in study design and standardization are needed in order to improve the validity and comparability of in vitro results on endodontic disinfection procedures, in turn improving clinical outcomes. This study optimizes two models at all steps: tooth selection, pretreatment, inoculation method (by growth or centrifugation), and confocal laser scanning microscopy (CLSM)-guided imaging of LIVE/DEAD-stained specimens. Individual anatomical conditions lead to substantial differences in penetration depth. Sclerosis grading (SCG), a classification system introduced in this study, provides information about the sclerosis status of the dentine and is helpful for careful, specific, and comparable tooth selection in in vitro studies. Sonically activated EDTA for the pretreatment of roots, inoculation of Enterococcus faecalis in an overflow model, 3-4 weeks of incubation, as well as polishing of dentine slices before staining, led to advances in the visualization of bacterial penetration and irrigation depths. In contrast, NaOCl pretreatment negatively affected performance reproducibility and should be avoided in any pretreatment. Nonsclerotized teeth (SCG0) can be used for microbial semilunar-shaped inoculation by centrifugation as a "quick-and-dirty" model for initial orientation. In conclusion, CLSM-guided imaging for quantifying endodontic infection/disinfection is a very powerful method after the fine-tuning of materials and methods.

3.
Antibiotics (Basel) ; 12(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37760754

RESUMO

Porphyromonas gingivalis (P.g.) is a key pathogen involved in periodontal diseases. The aim of this study was to investigate the prevalence and phylogenetic origin of the lipoprotein-gene ragB in its most virulent variant, ragB-1 (co-transcribed with ragA-1 as locus rag-1), in different P.g. strains collected worldwide. A total of 138 P.g. strains were analyzed for the presence of ragB-1 by pooled analysis and subsequently individual PCRs. Sequencing a core fragment of ragB-1 of the individual strains made it possible to carry out a phylogenetic classification using sequence alignment. In total, 22 of the 138 P.g. strains tested positive for ragB-1, corresponding to a prevalence of 16%. The fragment investigated was highly conserved, with variations in the base sequence detected in only three strains (OMI 1072, OMI 1081, and OMI 1074). In two strains, namely OMI 1072 (original name: I-433) and OMI 1081 (original name: I-372), which originate from monkeys, two amino-acid alterations were apparent. Since ragB-1 has also been found in animal strains, it may be concluded that rag-1 was transferred from animals to humans and that this originally virulent variant was weakened by mutations over time so that new, less virulent, adapted commensal versions of rag (rag-2, -3, and -4), with P.g. as the host, evolved.

4.
Antibiotics (Basel) ; 10(12)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34943676

RESUMO

Subgingival air-polishing devices (SAPD) can reduce bacterial biofilms and thus support periodontal healing. The authors of this study evaluated the effectiveness of the glycine-based and trehalose-based air-polishing powders in removing pathogenic bacteria in a subgingival biofilm model. We treated 56 subgingival pockets in porcine jaws with SAPD. Subgingival air polishing was performed in three groups of 13 pockets each: I, glycine-based powder; II, trehalose-based powder; and III, water alone. Another group (IV) served as untreated controls. Prior to air polishing, inoculated titanium bars were inserted into the pockets containing periopathogenic bacteria such as Porphyromonas gingivalis and Tannerella forsythia. Remaining bacteria were evaluated using real-time PCR. The numbers of remaining bacteria depended on the treatment procedure, with the lowest number of total bacteria in group I (median: 1.96 × 106 CFU; min: 1.46 × 105; max: 9.30 × 106). Both polishing powders in groups I and II (median: 1.36 × 107 CFU; min: 5.22 × 105; max: 7.50 × 107) showed a statistically significantly lower total bacterial load in comparison to both group IV (median: 2.02 × 108 CFU; min: 5.14 × 107; max: 4.51 × 108; p < 0.05) and group III (median: 4.58 × 107 CFU; min: 2.00 × 106; max: 3.06 × 108; p < 0.05). Both subgingival air-polishing powders investigated can reduce periopathogenic bacteria and thus support antimicrobial therapy approaches in periodontal treatment regimens.

5.
Photodiagnosis Photodyn Ther ; 28: 75-79, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31470119

RESUMO

AIM: Diode lasers are commonly used for antimicrobial photodynamic therapy (aPDT). This study aimed to assess the feasibility of transgingival laser irradiation during aPDT and evaluate whether the photosensitizer can be activated. MATERIALS AND METHODS: Four diode laser settings were assessed for transgingival irradiation: 120 mW, 80 mW, 60 mW, and 40 mW. Fifteen soft-tissue pieces from a pig's lower jaw were prepared. The specimens' thickness was measured and transgingival laser irradiation was performed. A digital power meter measured laser power on the other side of the tissue. The power outcome after staining of the nonbuccal aspect of the tissue with photosensitizer dye was assessed similarly. RESULTS: Transgingival laser irradiation (average soft-tissue thickness: 0.84 ±â€¯0.06 mm) resulted in different power transmission depending on the power settings and photosensitizer. The lowest values were observed with the 40 mW setting and photosensitizer (median 3.3 mW, max. 5.0 mW, min. 2.3 mW, interquartile range 1.2), and the highest at 120 mW without photosensitizer (median 41.3 mW, max. 42.7 mW, min. 38.0 mW; interquartile range 1.5). CONCLUSIONS: This study indicates that transgingival irradiation may be suitable for aPDT, since power transmission through the gingival tissue was observed in all specimens. However, the decrease in laser power caused by both the soft tissue and the photosensitizer has to be taken into account.


Assuntos
Gengiva/efeitos dos fármacos , Lasers Semicondutores , Fenotiazinas/farmacologia , Fotoquimioterapia/instrumentação , Fármacos Fotossensibilizantes/farmacologia , Animais , Gengiva/efeitos da radiação , Técnicas In Vitro , Suínos
6.
Photodiagnosis Photodyn Ther ; 27: 433-439, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31319164

RESUMO

PURPOSE: The main aim in periodontitis treatment is to remove supragingival and subgingival biofilm. Mechanical treatment to eliminate pathogenic bacteria is limited by morphological conditions on the root surface. This study assessed the antibacterial effectiveness of different laser-based photochemical systems, particularly a novel curcumin-based option. METHODS: Ninety-one titanium bars were inoculated with an artificial biofilm of common pathogenic periodontal bacteria and inserted into an artificial periodontal pocket model. The following groups (n = 13) were tested: 1, curcumin solution plus SLB laser irradiation (C + L; 445 nm, 0.6 W, 25% duty cycle, 100 Hz, 10 s); 2, curcumin solution (Cur); 3, dimethyl sulfoxide solution (DMSO); 4, SiroLaser Blue (SLB) - laser irradiation (445 nm, 0.6 W, 25% duty cycle, 100 Hz, 10 s); 5, antimicrobial photodynamic therapy (aPDT); 6, antimicrobial photothermal therapy (aPTT); 7, control. The samples were stored in Eppendorf tubes and analyzed microbiologically using quantitative real-time polymerase chain reaction (PCR). The main parameter for analyzing group differences was the total bacterial load. Statistical analysis was performed with nonparametric methods. RESULTS: Statistically significant reductions in bacterial count were observed in all experimental groups (p < 0.05). The mean percentage reductions were as follows: SLB, 95.03%; aPDT, 83.91%; DMSO, 95.69%; C + L, 97.15%. No statistically significant differences in bacteria reduction were observed for laser alone (SLB), DMSO, or curcumin with or without additional laser irradiation. CONCLUSIONS: The greatest antibacterial efficacy was observed in samples treated with aPTT. Using curcumin as a photosensitizing agent for 445 nm laser irradiation did not result in improved antibacterial effectiveness in comparison with laser alone.


Assuntos
Biofilmes/efeitos dos fármacos , Curcumina/uso terapêutico , Hipertermia Induzida/métodos , Bolsa Periodontal/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Dimetil Sulfóxido/uso terapêutico , Humanos , Verde de Indocianina/uso terapêutico , Lasers Semicondutores , Azul de Metileno/uso terapêutico , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA