Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 18(44): e2204178, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36135726

RESUMO

Si1-x Gex is a key material in modern complementary metal-oxide-semiconductor and bipolar devices. However, despite considerable efforts in metal-silicide and -germanide compound material systems, reliability concerns have so far hindered the implementation of metal-Si1-x Gex junctions that are vital for diverse emerging "More than Moore" and quantum computing paradigms. In this respect, the systematic structural and electronic properties of Al-Si1-x Gex heterostructures, obtained from a thermally induced exchange between ultra-thin Si1-x Gex nanosheets and Al layers are reported. Remarkably, no intermetallic phases are found after the exchange process. Instead, abrupt, flat, and void-free junctions of high structural quality can be obtained. Interestingly, ultra-thin interfacial Si layers are formed between the metal and Si1-x Gex segments, explaining the morphologic stability. Integrated into omega-gated Schottky barrier transistors with the channel length being defined by the selective transformation of Si1-x Gex into single-elementary Al leads, a detailed analysis of the transport is conducted. In this respect, a report on a highly versatile platform with Si1-x Gex composition-dependent properties ranging from highly transparent contacts to distinct Schottky barriers is provided. Most notably, the presented abrupt, robust, and reliable metal-Si1-x Gex junctions can open up new device implementations for different types of emerging nanoelectronic, optoelectronic, and quantum devices.

2.
ACS Appl Mater Interfaces ; 14(22): 26238-26244, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35621308

RESUMO

Overcoming the difficulty in the precise definition of the metal phase of metal-Si heterostructures is among the key prerequisites to enable reproducible next-generation nanoelectronic, optoelectronic, and quantum devices. Here, we report on the formation of monolithic Al-Si heterostructures obtained from both bottom-up and top-down fabricated Si nanostructures and Al contacts. This is enabled by a thermally induced Al-Si exchange reaction, which forms abrupt and void-free metal-semiconductor interfaces in contrast to their bulk counterparts. The selective and controllable transformation of Si NWs into Al provides a nanodevice fabrication platform with high-quality monolithic and single-crystalline Al contacts, revealing resistivities as low as ρ = (6.31 ± 1.17) × 10-8 Ω m and breakdown current densities of Jmax = (1 ± 0.13) × 1012 Ω m-2. Combining transmission electron microscopy and energy-dispersive X-ray spectroscopy confirmed the composition as well as the crystalline nature of the presented Al-Si-Al heterostructures, with no intermetallic phases formed during the exchange process in contrast to state-of-the-art metal silicides. The thereof formed single-element Al contacts explain the robustness and reproducibility of the junctions. Detailed and systematic electrical characterizations carried out on back- and top-gated heterostructure devices revealed symmetric effective Schottky barriers for electrons and holes. Most importantly, fulfilling compatibility with modern complementary metal-oxide semiconductor fabrication, the proposed thermally induced Al-Si exchange reaction may give rise to the development of next-generation reconfigurable electronics relying on reproducible nanojunctions.

3.
ACS Nano ; 15(11): 18135-18141, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34705418

RESUMO

The functional diversification and adaptability of the elementary switching units of computational circuits are disruptive approaches for advancing electronics beyond the static capabilities of conventional complementary metal-oxide-semiconductor-based architectures. Thereto, in this work the one-dimensional nature of monocrystalline and monolithic Al-Ge-based nanowire heterostructures is exploited to deliver charge carrier polarity control and furthermore to enable distinct programmable negative differential resistance at runtime. The fusion of electron and hole conduction together with negative differential resistance in a universal adaptive transistor may enable energy-efficient reconfigurable circuits with multivalued operability that are inherent components of emerging artificial intelligence electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA