RESUMO
In the European Union (EU), advanced therapy medicinal products (ATMPs) undergo evaluation by the European Medicines Agency's (EMA) Committee for Advanced Therapies (CAT) to obtain marketing authorization under the centralized procedure. Because of the diversity and complexity of ATMPs, a tailored approach to the regulatory process is required that needs to ensure the safety and efficacy of each product. Since ATMPs often target serious diseases with unmet medical need, the industry and authorities are interested in providing treatment to patients in a timely manner through optimized and expedited regulatory pathways. EU legislators and regulators have implemented various instruments to support the development and authorization of innovative medicines by offering scientific guidance at early stages, incentives for small developers and products for rare diseases, accelerated evaluation of marketing authorization applications, different types of marketing authorizations, and tailored programs for medicinal products with the orphan drug designation (ODD) and the Priority Medicines (PRIME) scheme. Since the regulatory framework for ATMPs was established, 20 products have been licenced, 15 with orphan drug designation, and 7 supported by PRIME. This chapter discusses the specific regulatory framework for ATMPs in the EU and highlights previous successes and remaining challenges.
Assuntos
Aprovação de Drogas , Doenças Raras , Humanos , União EuropeiaRESUMO
Integration of voltage-gated Ca(2+) channels in a network of protein-interactions is a crucial requirement for proper regulation of channel activity. In this study, we took advantage of the specific properties of the yeast split-ubiquitin system to search for and characterize so far unknown interaction partners of CaV2 Ca(2+) channels. We identified tetraspanin-13 (TSPAN-13) as an interaction partner of the α1 subunit of N-type CaV2.2, but not of P/Q-type CaV2.1 or L- and T-type Ca(2+) channels. Interaction could be located between domain IV of CaV2.2 and transmembrane segments S1 and S2 of TSPAN-13. Electrophysiological analysis revealed that TSPAN-13 specifically modulates the efficiency of coupling between voltage sensor activation and pore opening of the channel and accelerates the voltage-dependent activation and inactivation of the Ba(2+) current through CaV2.2. These data indicate that TSPAN-13 might regulate CaV2.2 Ca(2+) channel activity in defined synaptic membrane compartments and thereby influences transmitter release.