Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 8847-8882, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220190

RESUMO

Tryptophan (Trp) metabolism plays a vital role in cancer immunity. Indoleamine 2.3-dioxygenase 1 (IDO1), is a crucial enzyme in the metabolic pathway by which Trp is degraded to kynurenine (Kyn). IDO1-mediated Trp metabolites can inhibit tumor immunity and facilitate immune evasion by cancer cells; thus, targeting IDO1 is a potential tumor immunotherapy strategy. Recently, numerous IDO1 inhibitors have been introduced into clinical trials as immunotherapeutic agents for cancer treatment. However, drawbacks such as low oral bioavailability, slow onset of action, and high toxicity are associated with these drugs. With the continuous development of nanotechnology, medicine is gradually entering an era of precision healthcare. Nanodrugs carried by inorganic, lipid, and polymer nanoparticles (NPs) have shown great potential for tumor therapy, providing new ways to overcome tumor diversity and improve therapeutic efficacy. Compared to traditional drugs, nanomedicines offer numerous significant advantages, including a prolonged half-life, low toxicity, targeted delivery, and responsive release. Moreover, based on the physicochemical properties of these nanomaterials (eg, photothermal, ultrasonic response, and chemocatalytic properties), various combination therapeutic strategies have been developed to synergize the effects of IDO1 inhibitors and enhance their anticancer efficacy. This review is an overview of the mechanism by which the Trp-IDO1-Kyn pathway acts in tumor immune escape. The classification of IDO1 inhibitors, their clinical applications, and barriers for translational development are discussed, the use of IDO1 inhibitor-based nanodrug delivery systems as combination therapy strategies is summarized, and the issues faced in their clinical application are elucidated. We expect that this review will provide guidance for the development of IDO1 inhibitor-based nanoparticle nanomedicines that can overcome the limitations of current treatments, improve the efficacy of cancer immunotherapy, and lead to new breakthroughs in the field of cancer immunotherapy.


Assuntos
Imunoterapia , Indolamina-Pirrol 2,3,-Dioxigenase , Nanopartículas , Neoplasias , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/terapia , Imunoterapia/métodos , Nanopartículas/química , Animais , Nanomedicina , Triptofano/química , Triptofano/administração & dosagem , Inibidores Enzimáticos/química , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Cinurenina
2.
Nanoscale ; 16(18): 8708-8738, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38634521

RESUMO

Cancer immunotherapy, a burgeoning modality for cancer treatment, operates by activating the autoimmune system to impede the growth of malignant cells. Although numerous immunotherapy strategies have been employed in clinical cancer therapy, the resistance of cancer cells to immunotherapeutic medications and other apprehensions impede the attainment of sustained advantages for most patients. Recent advancements in nanotechnology for drug delivery hold promise in augmenting the efficacy of immunotherapy. However, the efficacy is currently constrained by the inadequate specificity of delivery, low rate of response, and the intricate immunosuppressive tumor microenvironment. In this context, the investigation of cell membrane coated nanoparticles (CMNPs) has revealed their ability to perform targeted delivery, immune evasion, controlled release, and immunomodulation. By combining the advantageous features of natural cell membranes and nanoparticles, CMNPs have demonstrated their unique potential in the realm of cancer immunotherapy. This review aims to emphasize recent research progress and elucidate the underlying mechanisms of CMNPs as an innovative drug delivery platform for enhancing cancer immunotherapy. Additionally, it provides a comprehensive overview of the current immunotherapeutic strategies involving different cell membrane types of CMNPs, with the intention of further exploration and optimization.


Assuntos
Membrana Celular , Imunoterapia , Nanopartículas , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Membrana Celular/metabolismo , Membrana Celular/química , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Animais , Microambiente Tumoral/efeitos dos fármacos
3.
Int J Nanomedicine ; 19: 3333-3365, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617796

RESUMO

Cancer-associated fibroblasts (CAF) are the most abundant stromal cells in the tumor microenvironment (TME), especially in solid tumors. It has been confirmed that it can not only interact with tumor cells to promote cancer progression and metastasis, but also affect the infiltration and function of immune cells to induce chemotherapy and immunotherapy resistance. So, targeting CAF has been considered an important method in cancer treatment. The rapid development of nanotechnology provides a good perspective to improve the efficiency of targeting CAF. At present, more and more researches have focused on the application of nanoparticles (NPs) in targeting CAF. These studies explored the effects of different types of NPs on CAF and the multifunctional nanomedicines that can eliminate CAF are able to enhance the EPR effect which facilitate the anti-tumor effect of themselves. There also exist amounts of studies focusing on using NPs to inhibit the activation and function of CAF to improve the therapeutic efficacy. The application of NPs targeting CAF needs to be based on an understanding of CAF biology. Therefore, in this review, we first summarized the latest progress of CAF biology, then discussed the types of CAF-targeting NPs and the main strategies in the current. The aim is to elucidate the application of NPs in targeting CAF and provide new insights for engineering nanomedicine to enhance immune response in cancer treatment.


Assuntos
Fibroblastos Associados a Câncer , Nanopartículas , Neoplasias , Imunoterapia , Nanomedicina , Nanotecnologia , Neoplasias/tratamento farmacológico
4.
J Nanobiotechnology ; 22(1): 97, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454419

RESUMO

Immune checkpoint blockers (ICBs) have been applied for cancer therapy and achieved great success in the field of cancer immunotherapy. Nevertheless, the broad application of ICBs is limited by the low response rate. To address this issue, increasing studies have found that the induction of immunogenic cell death (ICD) in tumor cells is becoming an emerging therapeutic strategy in cancer treatment, not only straightly killing tumor cells but also enhancing dying cells immunogenicity and activating antitumor immunity. ICD is a generic term representing different cell death modes containing ferroptosis, pyroptosis, autophagy and apoptosis. Traditional chemotherapeutic agents usually inhibit tumor growth based on the apoptotic ICD, but most tumor cells are resistant to the apoptosis. Thus, the induction of non-apoptotic ICD is considered to be a more efficient approach for cancer therapy. In addition, due to the ineffective localization of ICD inducers, various types of nanomaterials have been being developed to achieve targeted delivery of therapeutic agents and improved immunotherapeutic efficiency. In this review, we briefly outline molecular mechanisms of ferroptosis, pyroptosis and autophagy, as well as their reciprocal interactions with antitumor immunity, and then summarize the current progress of ICD-induced nanoparticles based on different strategies and illustrate their applications in the cancer therapy.


Assuntos
Ferroptose , Nanopartículas , Neoplasias , Humanos , Piroptose , Imunoterapia , Autofagia , Inibidores de Checkpoint Imunológico , Neoplasias/terapia
5.
ACS Appl Mater Interfaces ; 16(10): 12117-12148, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38421602

RESUMO

Acute kidney injury (AKI) is a serious clinical syndrome with high morbidity, elevated mortality, and poor prognosis, commonly considered a "sword of Damocles" for hospitalized patients, especially those in intensive care units. Oxidative stress, inflammation, and apoptosis, caused by the excessive production of reactive oxygen species (ROS), play a key role in AKI progression. Hence, the investigation of effective and safe antioxidants and inflammatory regulators to scavenge overexpressed ROS and regulate excessive inflammation has become a promising therapeutic option. However, the unique physiological structure and complex pathological alterations in the kidneys render traditional therapies ineffective, impeding the residence and efficacy of most antioxidant and anti-inflammatory small molecule drugs within the renal milieu. Recently, nanotherapeutic interventions have emerged as a promising and prospective strategy for AKI, overcoming traditional treatment dilemmas through alterations in size, shape, charge, and surface modifications. This Review succinctly summarizes the latest advancements in nanotherapeutic approaches for AKI, encompassing nanozymes, ROS scavenger nanomaterials, MSC-EVs, and nanomaterials loaded with antioxidants and inflammatory regulator. Following this, strategies aimed at enhancing biocompatibility and kidney targeting are introduced. Furthermore, a brief discussion on the current challenges and future prospects in this research field is presented, providing a comprehensive overview of the evolving landscape of nanotherapeutic interventions for AKI.


Assuntos
Injúria Renal Aguda , Humanos , Espécies Reativas de Oxigênio/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Rim/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Inflamação/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA