Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Acta Biomater ; 80: 203-216, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30223090

RESUMO

The hemodynamic functionality of heart valves strongly depends on the distribution of collagen fibers, which are their main load-bearing constituents. It is known that collagen networks remodel in response to mechanical stimuli. Yet, the complex interplay between external load and collagen remodeling is poorly understood. In this study, we adopted a computational approach to simulate collagen remodeling occurring in native fetal and pediatric heart valves. The computational model accounted for several biological phenomena: cellular (re)orientation in response to both mechanical stimuli and topographical cues provided by collagen fibers; collagen deposition and traction forces along the main cellular direction; collagen degradation decreasing with stretch; and cell-mediated collagen prestretch. Importantly, the computational results were well in agreement with previous experimental data for all simulated heart valves. Simulations performed by varying some of the computational parameters suggest that cellular forces and (re)orientation in response to mechanical stimuli may be fundamental mechanisms for the emergence of the circumferential collagen alignment usually observed in native heart valves. On the other hand, the tendency of cells to coalign with collagen fibers is essential to maintain and reinforce that circumferential alignment during development. STATEMENT OF SIGNIFICANCE: The hemodynamic functionality of heart valves is strongly influenced by the alignment of load-bearing collagen fibers. Currently, the mechanisms that are responsible for the development of the circumferential collagen alignment in native heart valves are not fully understood. In the present study, cell-mediated remodeling of native human heart valves during early development was computationally simulated to understand the impact of individual mechanisms on collagen alignment. Our simulations successfully predicted the degree of collagen alignment observed in native fetal and pediatric semilunar valves. The computational results suggest that the circumferential collagen alignment arises from cell traction and cellular (re)orientation in response to mechanical stimuli, and with increasing age is reinforced by the tendency of cells to co-align with pre-existing collagen fibers.


Assuntos
Colágeno/metabolismo , Desenvolvimento Embrionário , Valvas Cardíacas/embriologia , Valvas Cardíacas/metabolismo , Pré-Escolar , Simulação por Computador , Feto/metabolismo , Humanos
2.
Sci Rep ; 8(1): 8518, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29867153

RESUMO

Adherent cells are generally able to reorient in response to cyclic strain. In three-dimensional tissues, however, extracellular collagen can affect this cellular response. In this study, a computational model able to predict the combined effects of mechanical stimuli and collagen on cellular (re)orientation was developed. In particular, a recently proposed computational model (which only accounts for mechanical stimuli) was extended by considering two hypotheses on how collagen influences cellular (re)orientation: collagen contributes to cell alignment by providing topographical cues (contact guidance); or collagen causes a spatial obstruction for cellular reorientation (steric hindrance). In addition, we developed an evolution law to predict cell-induced collagen realignment. The hypotheses were tested by simulating bi- or uniaxially constrained cell-populated collagen gels with different collagen densities, subjected to immediate or delayed uniaxial cyclic strain with varying strain amplitudes. The simulation outcomes are in agreement with previous experimental reports. Taken together, our computational approach is a promising tool to understand and predict the remodeling of collagenous tissues, such as native or tissue-engineered arteries and heart valves.


Assuntos
Colágeno/metabolismo , Simulação por Computador , Modelos Biológicos , Animais , Humanos
3.
Acta Biomater ; 35: 118-26, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26923531

RESUMO

Collagen fiber anisotropy has a significant influence on the function and mechanical properties of cardiovascular tissues. We investigated if strain-dependent collagen degradation can explain collagen orientation in response to uniaxial and biaxial mechanical loads. First, decellularized pericardial samples were stretched to a fixed uniaxial strain and after adding a collagen degrading enzyme (collagenase), force relaxation was measured to calculate the degradation rate. This data was used to identify the strain-dependent degradation rate. A minimum was observed in the degradation rate curve. It was then demonstrated, for the first time, that biaxial strain in combination with collagenase alters the collagen fiber alignment from an initially isotropic distribution to an anisotropic distribution with a mean alignment corresponding with the strain at the minimum degradation rate, which may be in between the principal strain directions. When both strains were smaller than the minimum degradation point, fibers tended to align in the direction of the larger strain and when both strains were larger than the minimum degradation, fibers mainly aligned in the direction of the smaller strain. However, when one strain was larger and one was smaller than the minimum degradation point, the observed fiber alignment was in between the principal strain directions. In the absence of collagenase, uniaxial and biaxial strains only had a slight effect on the collagen (re)orientation of the decellularized samples. STATEMENT OF SIGNIFICANCE: Collagen fiber orientation is a significant determinant of the mechanical properties of native tissues. To mimic the native-like collagen alignment in vitro, we need to understand the underlying mechanisms that direct this alignment. In the current study, we aimed to control collagen fiber orientation by applying biaxial strains in the presence of collagenase. We hypothesized that strain-dependent collagen degradation can describe specific collagen orientation when biaxial mechanical strains are applied. Based on this hypothesis, collagen fibers align in the direction where the degradation is minimal. Pericardial tissues, as isotropic collagen matrices, were decellularized and subjected to a fixed uniaxial strain. Then, collagenase was added to initiate the collagen degradation and the relaxation of force was measured to indicate the degradation rate. The V-shaped relationship between degradation rate and strain was obtained to identify the minimum degradation rate point. It was then demonstrated, for the first time, that biaxial strain in combination with collagenase alters the collagen fiber alignment from almost isotropic to a direction corresponding with the strain at the minimum degradation rate.


Assuntos
Colagenases/metabolismo , Colágenos Fibrilares/química , Estresse Mecânico , Animais , Pericárdio/fisiologia , Sus scrofa
4.
Comput Methods Biomech Biomed Engin ; 19(12): 1347-58, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26823159

RESUMO

Understanding collagen and stress fiber remodeling is essential for the development of engineered tissues with good functionality. These processes are complex, highly interrelated, and occur over different time scales. As a result, excessive computational costs are required to computationally predict the final organization of these fibers in response to dynamic mechanical conditions. In this study, an analytical approximation of a stress fiber remodeling evolution law was derived. A comparison of the developed technique with the direct numerical integration of the evolution law showed relatively small differences in results, and the proposed method is one to two orders of magnitude faster.


Assuntos
Actinas/metabolismo , Simulação por Computador , Fibras de Estresse/metabolismo , Anisotropia , Colágeno/metabolismo , Engenharia Tecidual
5.
Biomech Model Mechanobiol ; 15(4): 761-89, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26338672

RESUMO

We present a model for stress-fiber reorganization and the associated contractility that includes both the kinetics of stress-fiber formation and dissociation as well as the kinetics of stress-fiber remodeling. These kinetics are motivated by considering the enthalpies of the actin/myosin functional units that constitute the stress fibers. The stress, strain and strain rate dependence of the stress-fiber dynamics are natural outcomes of the approach. The model is presented in a general 3D framework and includes the transport of the unbound stress-fiber proteins. Predictions of the model for a range of cyclic loadings are illustrated to rationalize hitherto apparently contrasting observations. These observations include: (1) For strain amplitudes around 10 % and cyclic frequencies of about 1 Hz, stress fibers align perpendicular to the straining direction in cells subjected to cyclic straining on a 2D substrate while the stress fibers align parallel with the straining direction in cells constrained in a 3D tissue. (2) At lower applied cyclic frequencies, stress fibers in cells on 2D substrates display no sensitivity to symmetric applied strain versus time waveforms but realign in response to applied loadings with a fast lengthening rate and slow shortening. (3) At very low applied cyclic frequencies (on the order of mHz) with symmetric strain versus time waveforms, cells on 2D substrates orient perpendicular to the direction of cyclic straining above a critical strain amplitude.


Assuntos
Modelos Biológicos , Fibras de Estresse/metabolismo , Simulação por Computador , Estresse Mecânico , Termodinâmica , Fatores de Tempo
6.
Acta Biomater ; 29: 161-169, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26537200

RESUMO

In order to create tissue-engineered heart valves with long-term functionality, it is essential to fully understand collagen remodeling during neo-tissue formation. Collagen remodeling is thought to maintain mechanical tissue homeostasis. Yet, the driving factor of collagen remodeling remains unidentified. In this study, we determined the collagen architecture and the geometric and mechanical properties of human native semilunar heart valves of fetal to adult age using confocal microscopy, micro-indentation and inverse finite element analysis. The outcomes were used to predict age-dependent changes in stress and stretch in the heart valves via finite element modeling. The results indicated that the circumferential stresses are different between the aortic and pulmonary valve, and, moreover, that the stress increases considerably over time in the aortic valve. Strikingly, relatively small differences were found in stretch with time and between the aortic and pulmonary valve, particularly in the circumferential direction, which is the main determinant of the collagen fiber stretch. Therefore, we suggest that collagen remodeling in the human heart valve maintains a stretch-driven homeostasis. Next to these novel insights, the unique human data set created in this study provides valuable input for the development of numerical models of collagen remodeling and optimization of tissue engineering. STATEMENT OF SIGNIFICANCE: Annually, over 280,000 heart valve replacements are performed worldwide. Tissue engineering has the potential to provide valvular disease patients with living valve substitutes that can last a lifetime. Valve functionality is mainly determined by the collagen architecture. Hence, understanding collagen remodeling is crucial for creating tissue-engineered valves with long-term functionality. In this study, we determined the structural and material properties of human native heart valves of fetal to adult age to gain insight into the mechanical stimuli responsible for collagen remodeling. The age-dependent evolutionary changes in mechanical state of the native valve suggest that collagen remodeling in heart valves is a stretch-driven process.


Assuntos
Envelhecimento/fisiologia , Colágeno/metabolismo , Valvas Cardíacas/crescimento & desenvolvimento , Modelos Cardiovasculares , Estresse Mecânico , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade
7.
Acta Biomater ; 27: 21-31, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26316031

RESUMO

The emerging field of in situ tissue engineering (TE) of load bearing tissues places high demands on the implanted scaffolds, as these scaffolds should provide mechanical stability immediately upon implantation. The new class of synthetic supramolecular biomaterial polymers, which contain non-covalent interactions between the polymer chains, thereby forming complex 3D structures by self assembly. Here, we have aimed to map the degradation characteristics of promising (supramolecular) materials, by using a combination of in vitro tests. The selected biomaterials were all polycaprolactones (PCLs), either conventional and unmodified PCL, or PCL with supramolecular hydrogen bonding moieties (either 2-ureido-[1H]-pyrimidin-4-one or bis-urea units) incorporated into the backbone. As these materials are elastomeric, they are suitable candidates for cardiovascular TE applications. Electrospun scaffold strips of these materials were incubated with solutions containing enzymes that catalyze hydrolysis, or solutions containing oxidative species. At several time points, chemical, morphological, and mechanical properties were investigated. It was demonstrated that conventional and supramolecular PCL-based polymers respond differently to enzyme-accelerated hydrolytic or oxidative degradation, depending on the morphological and chemical composition of the material. Conventional PCL is more prone to hydrolytic enzymatic degradation as compared to the investigated supramolecular materials, while, in contrast, the latter materials are more susceptible to oxidative degradation. Given the observed degradation pathways of the examined materials, we are able to tailor degradation characteristics by combining selected PCL backbones with additional supramolecular moieties. The presented combination of in vitro test methods can be employed to screen, limit, and select biomaterials for pre-clinical in vivo studies targeted to different clinical applications.


Assuntos
Materiais Biocompatíveis/química , Enzimas/química , Teste de Materiais/métodos , Oxigênio/química , Poliésteres/química , Alicerces Teciduais , Força Compressiva , Módulo de Elasticidade , Galvanoplastia/métodos , Dureza , Hidrólise , Oxirredução , Estresse Mecânico , Resistência à Tração
8.
Biomech Model Mechanobiol ; 14(3): 603-13, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25319256

RESUMO

The anisotropic collagen architecture of an engineered cardiovascular tissue has a major impact on its in vivo mechanical performance. This evolving collagen architecture is determined by initial scaffold microstructure and mechanical loading. Here, we developed and validated a theoretical and computational microscale model to quantitatively understand the interplay between scaffold architecture and mechanical loading on collagen synthesis and degradation. Using input from experimental studies, we hypothesize that both the microstructure of the scaffold and the loading conditions influence collagen turnover. The evaluation of the mechanical and topological properties of in vitro engineered constructs reveals that the formation of extracellular matrix layers on top of the scaffold surface influences the mechanical anisotropy on the construct. Results show that the microscale model can successfully capture the collagen arrangement between the fibers of an electrospun scaffold under static and cyclic loading conditions. Contact guidance by the scaffold, and not applied load, dominates the collagen architecture. Therefore, when the collagen grows inside the pores of the scaffold, pronounced scaffold anisotropy guarantees the development of a construct that mimics the mechanical anisotropy of the native cardiovascular tissue.


Assuntos
Colágeno/metabolismo , Engenharia Tecidual , Alicerces Teciduais , Microscopia Eletrônica de Varredura
9.
J Mech Behav Biomed Mater ; 40: 397-405, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25305633

RESUMO

Microneedles represent promising tools for delivery of drugs to the skin. However, before these microneedles can be used in clinical practice, it is essential to understand the process of skin penetration by these microneedles. The present study was designed to monitor both penetration depth and force of single solid microneedles with various tip diameters ranging from 5 to 37µm to provide insight into the penetration process into the skin of these sharp microneedles. To determine the microneedle penetration depth, single microneedles were inserted in human ex vivo skin while monitoring the surface of the skin. Simultaneously, the force on the microneedles was measured. The average penetration depth at 1.5mm displacement was similar for all tip diameters. However, the process of penetration depth was significantly different for the various microneedles. Microneedles with a tip diameter of 5µm were smoothly inserted into the skin, while the penetration depth of microneedles with a larger tip diameter suddenly increased after initial superficial penetration. In addition, the force at insertion (defined as the force at a sudden decrease in measured force) linearly increased with tip diameter ranging from 20 to 167mN. The force drop at insertion was associated with a measured penetration depth of approximately 160µm for all tip diameters, suggesting that the drop in force was due to the penetration of a deeper skin layer. This study showed that sharp microneedles are essential to insert microneedles in a well-controlled way to a desired depth.


Assuntos
Sistemas de Liberação de Medicamentos , Microinjeções/instrumentação , Agulhas , Pele , Adulto , Desenho de Equipamento , Feminino , Humanos , Pessoa de Meia-Idade
10.
Integr Biol (Camb) ; 6(4): 422-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24549279

RESUMO

In the cardiac microenvironment, cardiomyocytes (CMs) are embedded in an aligned and structured extracellular matrix (ECM) to maintain the coordinated contractile function of the heart. The cardiac fibroblast (cFB) is the main cell type responsible for producing and remodeling this matrix. In cardiac diseases, however, adverse remodeling and CM death may lead to deterioration of the aligned myocardial structure. Here, we present an in vitro cardiac model system with uniaxial and biaxial constraints to induce (an)isotropy in 3D microtissues, thereby mimicking 'healthy' aligned and 'diseased' disorganized cardiac matrices. A mixture of neonatal mouse CMs and cFBs was resuspended in a collagen-matrigel hydrogel and seeded to form microtissues to recapitulate the in vivo cellular composition. Matrix disarray led to a stellate cell shape and a disorganized sarcomere organization, while CMs in aligned matrices were more elongated and had aligned sarcomeres. Although matrix disarray has no detrimental effect on the force generated by the CMs, it did have a negative effect on the homogeneity of contraction force distribution. Furthermore, proliferation of the cFBs affected microtissue contraction as indicated by the negative correlation between the percentage of cFBs in the microtissues and their beating frequency. These results suggest that in regeneration of the diseased heart, reorganization of the disorganized matrix will contribute to recover the coordinated contraction but restoring the ratio in cellular composition (CMs and cFBs) is also a prerequisite to completely regain tissue function.


Assuntos
Matriz Extracelular/fisiologia , Contração Miocárdica/fisiologia , Miocárdio/citologia , Miócitos Cardíacos/fisiologia , Engenharia Tecidual/métodos , Animais , Animais Recém-Nascidos , Anisotropia , Matriz Extracelular/ultraestrutura , Análise de Elementos Finitos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia de Fluorescência , Miocárdio/ultraestrutura , Miócitos Cardíacos/citologia
11.
J Mech Behav Biomed Mater ; 29: 557-67, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24035437

RESUMO

Mathematical models can provide valuable information to assess and evaluate the mechanical behavior and remodeling of native tissue. A relevant example when studying collagen remodeling is the Ross procedure because it involves placing the pulmonary autograft in the more demanding aortic valve mechanical environment. The objective of this study was therefore to assess and evaluate the mechanical differences between the aortic valve and pulmonary valve and the remodeling that may occur in the pulmonary valve when placed in the aortic position. The results from biaxial tensile tests of pairs of human aortic and pulmonary valves were compared and used to determine the parameters of a structurally based constitutive model. Finite element analyzes were then performed to simulate the mechanical response of both valves to the aortic diastolic load. Additionally, remodeling laws were applied to assess the remodeling of the pulmonary valve leaflet to the new environment. The pulmonary valve showed to be more extensible and less anisotropic than the aortic valve. When exposed to aortic pressure, the pulmonary leaflet appeared to remodel by increasing its thickness and reorganizing its collagen fibers, rotating them toward the circumferential direction.


Assuntos
Aorta/fisiologia , Fenômenos Mecânicos , Valva Pulmonar/fisiologia , Adolescente , Adulto , Aorta/citologia , Aorta/metabolismo , Fenômenos Biomecânicos , Criança , Colágeno/metabolismo , Análise de Elementos Finitos , Humanos , Pessoa de Meia-Idade , Valva Pulmonar/citologia , Valva Pulmonar/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-22548258

RESUMO

Collagen provides cardiovascular tissues with the ability to withstand haemodynamic loads. A similar network is essential to obtain in tissue-engineered (TE) samples of the same nature. Yet, the mechanism of collagen orientation is not fully understood. Typically collagen remodelling is linked to mechanical loading. However, TE constructs also show an oriented collagen network when developed under static culture. Experiments under these conditions also indicate that the tissue gradually compacts due to contractile stresses developed in the α-actin fibres of the cells. Therefore, it is hypothesised that cellular contractile stresses are responsible for collagen orientation. A model describing the cellular α-actin turnover and the stresses developed by them is integrated in a structural constitutive model describing the mechanical behaviour of collagen fibres. Results show that the model can successfully capture the sample compaction, tissue stress generation and its heterogeneous collagen arrangement.


Assuntos
Colágeno/ultraestrutura , Fenômenos Biomecânicos , Colágeno/fisiologia , Simulação por Computador , Fibras de Estresse/ultraestrutura , Engenharia Tecidual
13.
J Biomech ; 46(12): 2075-81, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23849135

RESUMO

Transcatheter heart valve replacement is an attractive and promising technique for congenital as well as acquired heart valve disease. In this procedure, the replacement valve is mounted in a stent that is expanded at the aimed valve position and fixated by clamping. However, for this technique to be appropriate for pediatric patients, the material properties of the host tissue need to be determined to design stents that can be optimized for this particular application. In this study we performed equibiaxial tensile tests on four adult ovine pulmonary artery walls and compared the outcomes with one pediatric pulmonary artery. Results show that the pediatric pulmonary artery was significantly thinner (1.06 ± 0.36 mm (mean ± SD)) than ovine tissue (2.85 ± 0.40 mm), considerably stiffer for strain values that exceed the physiological conditions (beyond 50% strain in the circumferential and 60% in the longitudinal direction), more anisotropic (with a significant difference in stiffness between the longitudinal and circumferential directions beyond 60% strain) and presented stronger non-linear stress-strain behavior at equivalent strains (beyond 26% strain) compared to ovine tissue. These discrepancies suggest that stents validated and optimized using the ovine pre-clinical model might not perform satisfactorily in pediatric patients. The material parameters derived from this study may be used to develop stent designs for both applications using computational models.


Assuntos
Elasticidade , Próteses Valvulares Cardíacas , Modelos Cardiovasculares , Desenho de Prótese , Artéria Pulmonar/fisiologia , Stents , Adulto , Animais , Pré-Escolar , Humanos , Ovinos , Resistência à Tração
14.
J Biomech ; 46(11): 1792-800, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23786664

RESUMO

Tissue engineering represents a promising technique to overcome the limitations of the current valve replacements, since it allows for creating living autologous heart valves that have the potential to grow and remodel. However, also this approach still faces a number of challenges. One particular problem is regurgitation, caused by cell-mediated tissue retraction or the mismatch in geometrical and material properties between tissue-engineered heart valves (TEHVs) and their native counterparts. The goal of the present study was to assess the influence of valve geometry and tissue anisotropy on the deformation profile and closed configuration of TEHVs. To achieve this aim, a range of finite element models incorporating different valve shapes was developed, and the constitutive behavior of the tissue was modeled using an established computational framework, where the degree of anisotropy was varied between values representative of TEHVs and native valves. The results of this study suggest that valve geometry and tissue anisotropy are both important to maximize the radial strains and thereby the coaptation area. Additionally, the minimum degree of anisotropy that is required to obtain positive radial strains was shown to depend on the valve shape and the pressure to which the valves are exposed. Exposure to pulmonary diastolic pressure only yielded positive radial strains if the anisotropy was comparable to the native situation, whereas considerably less anisotropy was required if the valves were exposed to aortic diastolic pressure.


Assuntos
Bioprótese , Próteses Valvulares Cardíacas , Valvas Cardíacas/anatomia & histologia , Valvas Cardíacas/fisiologia , Engenharia Tecidual , Anisotropia , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Modelos Cardiovasculares , Alicerces Teciduais
15.
Artigo em Inglês | MEDLINE | ID: mdl-22300425

RESUMO

Deep tissue injury (DTI) is a severe form of pressure ulcer where tissue damage starts in deep tissues underneath intact skin. Tissue deformation may play an important role in the aetiology, which can be investigated using an experimental-numerical approach. Recently, an animal-specific finite element model has been developed to simulate experiments in which muscle tissue was compressed with an indenter. In this study, the material behaviour and boundary conditions were adapted to improve the agreement between model and experiment and to investigate the influence of these adaptations on the predicted strain distribution. The use of a highly nonlinear material law and including friction between the indenter and the muscle both improved the quality of the model and considerably influenced the estimated strain distribution. With the improved model, the required sample size to detect significant differences between loading conditions can be diminished, which is clearly relevant in experiments involving animals.


Assuntos
Músculo Esquelético/patologia , Animais , Análise de Elementos Finitos , Humanos , Imageamento por Ressonância Magnética , Modelos Animais , Ratos
16.
Artigo em Inglês | MEDLINE | ID: mdl-22300480

RESUMO

Mechanical loading of soft tissues covering bony prominences can cause skeletal muscle damage, ultimately resulting in a severe pressure ulcer termed deep tissue injury (DTI). Deformation plays an important role in the aetiology of DTI. Therefore, it is essential to minimise internal muscle deformations in subjects at risk of DTI. As an example, spinal cord-injured (SCI) individuals exhibit structural changes leading to a decrease in muscle thickness and stiffness, which subsequently increase the tissue deformations. In the present study, an animal-specific finite element model, where the geometry and boundary conditions were derived from magnetic resonance images, was developed. It was used to investigate the internal deformations in the muscle, fat and skin layers of the porcine buttocks during loading. The model indicated the presence of large deformations in both the muscle and the fat layers, with maximum shear strains up to 0.65 in muscle tissue and 0.63 in fat. Furthermore, a sensitivity analysis showed that the tissue deformations depend considerably on the relative stiffness values of the different tissues. For example, a change in muscle stiffness had a large effect on the muscle deformations. A 50% decrease in stiffness caused an increase in maximum shear strain from 0.65 to 0.99, whereas a 50% increase in stiffness resulted in a decrease in maximum shear strain from 0.65 to 0.49. These results indicate the importance of restoring tissue properties after SCI, with the use of, for example, electrical stimulation, to prevent the development of DTI.


Assuntos
Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Suporte de Carga/fisiologia , Tecido Adiposo/patologia , Tecido Adiposo/fisiopatologia , Animais , Nádegas , Elasticidade , Modelos Animais , Lesões dos Tecidos Moles/patologia , Lesões dos Tecidos Moles/fisiopatologia , Estresse Mecânico , Suínos , Porco Miniatura
17.
J Mech Behav Biomed Mater ; 14: 199-207, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23032327

RESUMO

Skin is a multilayer composite and exhibits highly non-linear, viscoelastic, anisotropic material properties. In many consumer product and medical applications (e.g. during shaving, needle insertion, patient re-positioning), large tissue displacements and deformations are involved; consequently large local strains in the skin tissue can occur. Here, we present a novel imaging-based method to study skin deformations and the mechanics of interacting skin layers of full-thickness skin. Shear experiments and real-time video recording were combined with digital image correlation and strain field analysis to visualise and quantify skin layer deformations during dynamic mechanical testing. A global shear strain of 10% was applied to airbrush-patterned porcine skin (thickness: 1.2-1.6mm) using a rotational rheometer. The recordings were analysed with ARAMIS image correlation software, and local skin displacement, strain and stiffness profiles through the skin layers determined. The results of this pilot study revealed inhomogeneous skin deformation, characterised by a gradual transition from a low (2.0-5.0%; epidermis) to high (10-22%; dermis) shear strain regime. Shear moduli ranged from 20 to 130kPa. The herein presented method will be used for more extended studies on viable human skin, and is considered a valuable foundation for further development of constitutive models which can be used in advanced finite element analyses of skin.


Assuntos
Fenômenos Mecânicos , Imagem Molecular/métodos , Pele , Animais , Fenômenos Biomecânicos , Humanos , Processamento de Imagem Assistida por Computador , Imagem Molecular/instrumentação , Estresse Mecânico , Suínos , Fatores de Tempo , Incerteza , Gravação em Vídeo
18.
J Biomech ; 45(16): 2893-8, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22999107

RESUMO

Electrospinning is a promising technology to produce scaffolds for cardiovascular tissue engineering. Each electrospun scaffold is characterized by a complex micro-scale structure that is responsible for its macroscopic mechanical behavior. In this study, we focus on the development and the validation of a computational micro-scale model that takes into account the structural features of the electrospun material, and is suitable for studying the multi-scale scaffold mechanics. We show that the computational tool developed is able to describe and predict the mechanical behavior of electrospun scaffolds characterized by different microstructures. Moreover, we explore the global mechanical properties of valve-shaped scaffolds with different microstructural features, and compare the deformation of these scaffolds when submitted to diastolic pressures with a tissue engineered and a native valve. It is shown that a pronounced degree of anisotropy is necessary to reproduce the deformation patterns observed in the native heart valve.


Assuntos
Valvas Cardíacas , Modelos Biológicos , Alicerces Teciduais , Animais , Materiais Biocompatíveis , Fenômenos Biomecânicos , Poliésteres , Estresse Mecânico , Suínos , Engenharia Tecidual
19.
Biochem Biophys Res Commun ; 426(1): 54-8, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22910417

RESUMO

Collagen is the main load-bearing component of the artery. The 3D arrangement of the collagen fibers is crucial to understand the mechanical behavior of such tissues. We compared collagen fiber alignment obtained by second harmonic generation (SHG) microscopy with the alignment obtained by diffusion tensor imaging (DTI) throughout the wall of a porcine carotid artery to check the feasibility of using DTI as a fast and non-destructive method instead of SHG. The middle part of the artery was cut into two segments: one for DTI and one for the SHG measurements. The tissue for SHG measurements was cut into 30µm tangential sections. After scanning all sections, they were registered together and the fiber orientation was quantified by an in-house algorithm. The tissue for DTI measurement was embedded in type VII agarose and scanned with an MRI-scanner. Fiber tractography was performed on the DTI images. Both methods showed a layered structure of the wall. The fibers were mainly oriented circumferentially in the outer adventitia and media. DTI revealed the predominant layers of the arterial wall. This study showed the feasibility of using DTI for evaluating the collagen orientation in native artery as a fast and non-destructive method.


Assuntos
Artérias Carótidas/ultraestrutura , Colágeno/química , Imagem de Tensor de Difusão , Animais , Fenômenos Mecânicos , Suínos , Inclusão do Tecido
20.
Comput Methods Biomech Biomed Engin ; 15(11): 1157-79, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22185614

RESUMO

We study the nonlinear interaction of an aortic heart valve, composed of hyperelastic corrugated leaflets of finite density attached to a stented vessel under physiological flow conditions. In our numerical simulations, we use a 2D idealised representation of this arrangement. Blood flow is caused by a time-varying pressure gradient that mimics that of the aortic valve and corresponds to a peak Reynolds number equal to 4050. Here, we fully account for the shear-thinning behaviour of the blood and large deformations and contact between the leaflets by solving the momentum and mass balances for blood and leaflets. The mixed finite element/Galerkin method along with linear discontinuous Lagrange multipliers for coupling the fluid and elastic domains is adopted. Moreover, a series of challenging numerical issues such as the finite length of the computational domain and the conditions that should be imposed on its inflow/outflow boundaries, the accurate time integration of the parabolic and hyperbolic momentum equations, the contact between the leaflets and the non-conforming mesh refinement in part of the domain are successfully resolved. Calculations for the velocity and the shear stress fields of the blood reveal that boundary layers appear on both sides of a leaflet. The one along the ventricular side transfers blood with high momentum from the core region of the vessel to the annulus or the sinusoidal expansion, causing the continuous development of flow instabilities. At peak systole, vortices are convected in the flow direction along the annulus of the vessel, whereas during the closure stage of the valve, an extremely large vortex develops in each half of the flow domain.


Assuntos
Valva Aórtica/fisiologia , Modelos Cardiovasculares , Algoritmos , Valva Aórtica/cirurgia , Engenharia Biomédica , Simulação por Computador , Análise de Elementos Finitos , Próteses Valvulares Cardíacas , Hemodinâmica/fisiologia , Hemorreologia/fisiologia , Humanos , Stents
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA