Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(24): 240803, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38949355

RESUMO

We investigate the classical and quantum metrology of performing parameter estimation with interacting trapped bosons, which we theoretically treat by a self-consistent many-body approach of the multiconfigurational Hartree type. Focusing on a tilted double-well geometry, we compare a self-consistently determined and monitored two-mode truncation, with dynamically changing orbitals, to the conventional two-mode approach of fixed orbitals, where only Fock space coefficients evolve in time. We demonstrate that, as a consequence, various metrological quantities associated to a concrete measurement such as the classical Fisher information and the maximum likelihood estimator are deeply affected by the orbitals' change during the quantum evolution. Self-consistency of the quantum many-body dynamics of interacting trapped ultracold gases thus fundamentally affects the attainable parameter estimation accuracy of a given metrological protocol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA