Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Chemosphere ; 358: 142244, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705411

RESUMO

Neonicotinoids are a class of broad-spectrum insecticides that are dominant in the world market. They are widely distributed in the environment. Understanding the sources, distribution, and fate of these contaminants is critical to mitigating their effects and maintaining the health of aquatic ecosystems. Contamination of surface and groundwater by neonicotinoids has become a widespread problem worldwide, requiring comprehensive action to accurately determine the mechanisms behind the migration of these pesticides, their properties, and their adverse effects on the environment. A new approach to risk analysis for groundwater intake contamination with emerging contaminants was proposed. It was conducted on the example of four neonicotinoids (acetamiprid, clothianidin, thiamethoxam, and imidacloprid) in relation to groundwater accessed by a hypothetical groundwater intake, based on data obtained in laboratory tests using a dynamic method (column experiments). The results of the risk analysis conducted have shown that in this case study the use of acetamiprid and thiamethoxam for agricultural purposes poses an acceptable risk, and does not pose a risk to the quality of groundwater extracted from the intake for food purposes. Consequently, it does not pose a risk to the health and life of humans and other organisms depending on that water. The opposite situation is observed for clothianidin and imidacloprid, which pose a higher risk of groundwater contamination. For higher maximum concentration of neonicotinoids used in the risk analysis, the concentration of clothianidin and imidacloprid in the groundwater intake significantly (from several to several hundred thousand times) exceeds the maximum permissible levels for drinking water (<0.1 µg/L). This risk exists even if the insecticides containing these pesticides are used according to the information sheet provided by the manufacturer (lower maximum concentration), which results in exceeding the maximum permissible levels for drinking water from several to several hundred times.


Assuntos
Água Subterrânea , Inseticidas , Neonicotinoides , Poluentes Químicos da Água , Água Subterrânea/química , Neonicotinoides/análise , Poluentes Químicos da Água/análise , Inseticidas/análise , Medição de Risco , Monitoramento Ambiental , Tiametoxam/análise , Humanos , Tiazóis/análise , Guanidinas/análise , Água Potável/química , Nitrocompostos/análise
2.
Environ Earth Sci ; 81(8): 235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35411211

RESUMO

Although Turkey is not the biggest GHG polluter, its emissions have increased by 110.4% since 1990. Currently, its CO2 emissions alone have crossed 400 Mt. Within the scope of 2 °C targets (2D scenario), the country can easily surpass this target test by increasing its renewable energy sources as a primary energy source mix, by developing its Enhanced Geothermal Sources (EGS) locked up in the radiogenic granites of western Anatolia. The radiogenic heat generated by these granites, spread over an area of 4221 sq. km, varies from 5.3 to 16.34 µW/m3. Based on the electricity generation capacity of granites from Soultz-sous-Forets and Cooper Basin EGS sites, the combined electricity generation capacity of Kestanbol and Kozak granite plutons is about 830 billion kWh. For the period extending from 2019 to 2023, Turkey is aiming at reducing the usage of gas for electricity generation from 29.9 to 20.7%, increasing the share of renewable energy sources from 32.5 to 38.8%, increasing the electricity production from local energy sources from 150 to 219 TWh and increasing the electricity usage per-capita from 3.7 to 4.3 MWh. These energy targets can be achieved by major contributions from hydrothermal and EGS energy sources. This review demonstrates that besides electricity and heat, EGS energy can be utilized, together with other renewable energy sources, such as hydrothermal, wind, and concentrated solar for providing fresh water through the desalination process. These energy sources would provide food, energy, and water security to the country for several decades.

3.
J Hazard Mater ; 414: 125510, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33652224

RESUMO

Arsenic has a natural cycle as it travels underground. It can mix with geothermal fluid in different ways under the control of magmatic and tectonic processes. Geogenic arsenic is present in many geothermal fields in the world at concentrations above the limits set for human health. The arsenic content of geothermal fluids is also related to the concept of geothermal play type, which forms geothermal systems, because the natural processes that form the geothermal system also control the arsenic cycle. In this study, an attempt is made to explain the relationship between the geothermal play type concept and geothermal arsenic circulation. For this purpose, geothermal field examples are given from around the world and Turkey. The result shows that arsenic concentrations can reach significant levels along with plate tectonic boundaries in the world. When arsenic concentrations were evaluated, the effect of major faults on the Anatolian Plate was clearly seen. Also, in the Anatolian plate where volcano-sedimentary units are common, geothermal fluids caused more effective alteration along with structural control and increased arsenic concentrations in geothermal systems. This interaction between structural elements, geothermal fluid, and the arsenic cycle shows that the concept of play type in geothermal systems should also be taken into consideration. It was determined that the places with high arsenic values are located within the convective-non-magmatic extensional geothermal play types such as Western Anatolian Extensional System and the North Anatolian Fault. The concept of play type in geothermal systems includes all systematic and external factors that make up these processes. For this reason, it is very important to evaluate the play type classification together with the arsenic cycle.

4.
J Hazard Mater ; 405: 124129, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33082019

RESUMO

One of the factors that determine agricultural crops' yield is the quality of water used during irrigation. In this study, we assessed the usability of spent geothermal water for agricultural irrigation after membrane treatment. Preliminary membrane tests were conducted on a laboratory-scale set up followed by mini-pilot scale tests in a geothermal heating center. In part I, three commercially available membranes (XLE BWRO, NF90, and Osmonics CK- NF) were tested using a cross-flow flat-sheet membrane testing unit (Sepa CF II, GE-Osmonics) under constant applied pressure of 20 bar. In part II, different spiral wound membranes (TR-NE90-NF, TR-BE-BW, and BW30) other than the ones used in laboratory tests were employed for the mini-pilot scale studies in a continuous mode. Water recovery and applied pressure were maintained constant at 60% and 12 bar, respectively. Performances of the membranes were assessed in terms of the permeate flux, boron and arsenic removals. In laboratory tests, the permeate fluxes were measured as 94.3, 87.9, and 64.3 L m-2 h-1 for XLE BWRO, CK-NF and NF90 membranes, respectively. The arsenic removals were found as 99.0%, 87.5% and 83.6% while the boron removals were 56.8%, 54.2%, and 26.1% for XLE BWRO, NF90 and CK-NF membranes, respectively. In field tests, permeate fluxes were 49.9, 26.8 and 24.0 L m-2 h-1 for TR-NE90-NF, BW30-RO and TR-BE-BW membranes, respectively. Boron removals were calculated as 49.9%, 44.1% and 40.7% for TR-BE-BW, TR-NE90-NF and BW30-RO membranes, respectively. Removal efficiencies of arsenic in mini-pilot scale membrane tests were all over 90%. Quality of the permeate water produced was suitable for irrigation in terms of the electrical conductivity (EC) and the total dissolved solids (TDS) for all tested membranes with respect to guidelines set by the Turkish Ministry of Environment and Urbanisation (TMEU). However, XLE BWRO, CK-NF and NF90 membranes failed to meet the required limits for irrigation in terms of boron and arsenic concentrations in the product water. The permeate streams of TR-BE-BW, TR-NE90-NF and BW30-RO membranes complied with the irrigation water standards in terms of EC, TDS and arsenic concentration while boron concentration remained above the allowable limit.

5.
Environ Monit Assess ; 191(10): 610, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31486893

RESUMO

Gediz Basin, located in the western part of Turkey constituting 2% land of the country, has an important groundwater potential in the area. Alasehir sub-basin, located in the southeast of the Gediz Basin and subject to the extensive withdrawal for the irrigation, constitutes the study area. Natural recharge to the sub-basin due to precipitation is numerically investigated in this study. For this purpose, 25 research wells, whose depths range from 20 to 50 m, were drilled to observe the recharge and collect the necessary field data for the numerical model. Meteorological data were collected from 3 weather stations installed in the study area. The numerical model HYDRUS was calibrated using the field water content data. Soil characterization was done on the core samples; the aquifer characterization was performed, and the alluvial aquifer recharge due to precipitation was calculated. As a result, the computed recharge value ranges from 21.78 to 68.52 mm, with an average value of 43.09 mm. According to the numerical model, this amount of recharge corresponds to 10% of the amount of annual rainfall.


Assuntos
Monitoramento Ambiental/métodos , Água Subterrânea/análise , Modelos Teóricos , Conservação dos Recursos Hídricos , Chuva , Solo , Turquia
6.
Environ Monit Assess ; 189(7): 318, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28589459

RESUMO

Water is the main source of energy production and economy in Afghanistan where agriculture accounts for more than 50% of the country's gross domestic product (GDP). Access to safe drinking water is still a problem in the country, which has caused different health issues and even child mortality especially in rural areas. Groundwater is the main source of drinking water in the country. However, little knowledge is available about the quality of groundwater throughout the entire country, and its quality has not been investigated extensively yet like in other countries in the world. While most people think that consuming groundwater is a reliable and safe source of drinking water for health, the United Nations (UN) agencies report various kinds of waterborne diseases and even child mortalities due to drinking water quality in the country. In this article, significant geogenic and anthropogenic factors that play a vital role in groundwater contamination of the country are identified and explained. Different geogenic contaminations such as arsenic, fluoride, sulfate, and boron occur in several areas of Afghanistan that have a direct effect on human health. The water quality mapping for Afghanistan is completed for half of the country, which shows that groundwater is plagued by high levels of fluoride and arsenic in some areas. The water quality mapping of the other half of the country cannot be completed due to security concerns currently. Also, there are different kinds of waterborne diseases such as diarrhea, cholera, and dysentery that can be seen in different parts of the country because of anthropogenic activities which continuously deteriorate groundwater.


Assuntos
Monitoramento Ambiental , Água Subterrânea/química , Poluentes Químicos da Água/análise , Afeganistão , Arsênio/análise , Água Potável , Humanos , Qualidade da Água , Recursos Hídricos , Abastecimento de Água/estatística & dados numéricos
7.
Environ Monit Assess ; 188(8): 473, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27435620

RESUMO

The Etili neighborhood in Can County (northwestern Turkey) has large reserves of coal and has been the site of many small- to medium-scale mining operations since the 1980s. Some of these have ceased working while others continue to operate. Once activities cease, the mining facilities and fields are usually abandoned without rehabilitation. The most significant environmental problem is acid mine drainage (AMD). This study was carried out to determine the acid generation potential of various lithological units in the Etili coal mine using static test methods. Seventeen samples were selected from areas with high acidic water concentrations: from different alteration zones belonging to volcanic rocks, from sedimentary rocks, and from coals and mine wastes. Static tests (paste pH, standard acid-base accounting, and net acid generation tests) were performed on these samples. The consistency of the static test results showed that oxidation of sulfide minerals, especially pyrite-which is widely found not only in the alteration zones of volcanic rocks but also in the coals and mine wastes-is the main factor controlling the generation of AMD in this mine. Lack of carbonate minerals in the region also increases the occurrence of AMD.


Assuntos
Minas de Carvão , Monitoramento Ambiental/métodos , Resíduos Industriais/análise , Poluentes Químicos da Água/análise , Ácidos/análise , Concentração de Íons de Hidrogênio , Ferro/análise , Minerais/análise , Sulfetos/análise , Turquia
8.
Arch Environ Contam Toxicol ; 70(4): 757-82, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26987541

RESUMO

A total of five acid mine lakes (AMLs) located in northwest Turkey were investigated using combined isotope, molecular, and geochemical techniques to identify geochemical processes controlling and promoting acid formation. All of the investigated lakes showed typical characteristics of an AML with low pH (2.59-3.79) and high electrical conductivity values (1040-6430 µS/cm), in addition to high sulfate (594-5370 mg/l) and metal (aluminum [Al], iron [Fe], manganese [Mn], nickel [Ni], and zinc [Zn]) concentrations. Geochemical and isotope results showed that the acid-generation mechanism and source of sulfate in the lakes can change and depends on the age of the lakes. In the relatively older lakes (AMLs 1 through 3), biogeochemical Fe cycles seem to be the dominant process controlling metal concentration and pH of the water unlike in the younger lakes (AMLs 4 and 5). Bacterial species determined in an older lake (AML 2) indicate that biological oxidation and reduction of Fe and S are the dominant processes in the lakes. Furthermore, O and S isotopes of sulfate indicate that sulfate in the older mine lakes may be a product of much more complex oxidation/dissolution reactions. However, the major source of sulfate in the younger mine lakes is in situ pyrite oxidation catalyzed by Fe(III) produced by way of oxidation of Fe(II). Consistent with this, insignificant fractionation between δ(34) [Formula: see text] and δ(34) [Formula: see text] values indicated that the oxidation of pyrite, along with dissolution and precipitation reactions of Fe(III) minerals, is the main reason for acid formation in the region. Overall, the results showed that acid generation during early stage formation of an AML associated with pyrite-rich mine waste is primarily controlled by the oxidation of pyrite with Fe cycles becoming the dominant processes regulating pH and metal cycles in the later stages of mine lake development.


Assuntos
Monitoramento Ambiental , Lagos/química , Poluentes Químicos da Água/análise , Carvão Mineral , Compostos Férricos , Ferro , Metais , Mineração , Sulfetos , Turquia
9.
Arch Environ Occup Health ; 70(1): 35-46, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24455995

RESUMO

The purpose of this research was to compare the causes of death in 5 villages situated in Simav Plain, Turkey, during 2005-2010 where different arsenic levels were detected in drinking water supplies. Since groundwater in Simav Plain had arsenic concentrations that ranged between 7.1 and 833.9 ppb, a two-phase research was formulated. In the first phase, public health surveys were conducted with 1,003 villagers to determine the distribution of diseases. In the second phase, verbal autopsy surveys and official death records were used to investigate the causes of death. In total, 402 death cases were found in the study area where cardiovascular system diseases (44%) and cancers (15.2%) were major causes. Cancers of lung (44.3%), prostate (9.8%), colon (9.8%), and stomach (8.2%) were comparably higher in villages with high arsenic levels in drinking water supplies. Furthermore, the majority of cases of liver, bladder, and stomach cancers were observed in villages with high arsenic levels.


Assuntos
Arsênio/análise , Arsênio/toxicidade , Água Potável/análise , Neoplasias/induzido quimicamente , Neoplasias/mortalidade , Abastecimento de Água/análise , Idoso , Idoso de 80 Anos ou mais , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/mortalidade , Causas de Morte , Exposição Ambiental/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Turquia/epidemiologia , Poluentes Químicos da Água/análise , Poluição Química da Água/análise
10.
J Hazard Mater ; 262: 951-9, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23498168

RESUMO

Arsenic (As) contamination in terrestrial geothermal systems has been identified in many countries worldwide. Concentrations higher than 0.01 mg/L are detrimental to human health. We examined potential consequences for As contamination of freshwater resources based on hydrogeochemical investigations of geothermal waters in deep wells and hot springs collected from western Anatolia, Turkey. We analyzed samples for major ions and trace element concentrations. Temperature of geothermal waters in deep wells showed extreme ranges (40 and 230 °C), while, temperature of hot spring fluids was up to 90 °C. The Piper plot illustrated two dominant water types: Na-HCO3(-) type for geothermal waters in deep wells and Ca-HCO3(-) type for hot spring fluids. Arsenic concentration ranged from 0.03 to 1.5mg/L. Dominance of reduced As species, i.e., As(III), was observed in our samples. The Eh value ranged between -250 and 119 mV, which suggests diverse geochemical conditions. Some of the measured trace elements were found above the World Health Organization guidelines and Turkish national safe drinking water limits. The variation in pH (range: 6.4-9.3) and As in geothermal waters suggest mixing with groundwater. Mixing of geothermal waters is primarily responsible for contamination of freshwater resources and making them unsuitable for drinking or irrigation.


Assuntos
Arsênio/análise , Monitoramento Ambiental/métodos , Água Doce , Poluentes Químicos da Água/análise , Arsênio/química , Carbono/química , Geografia , Água Subterrânea , Fontes Termais , Concentração de Íons de Hidrogênio , Temperatura , Oligoelementos/química , Turquia , Purificação da Água/métodos , Abastecimento de Água
11.
Arch Environ Contam Toxicol ; 64(3): 357-76, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23223936

RESUMO

Mining activity generates a large quantity of mine waste. The potential hazard of mine waste depends on the host mineral. The tendency of mine waste to produce acid mine drainage (AMD) containing potentially toxic metals depends on the amounts of sulfide, carbonate minerals, and trace-element concentrations found in ore deposits. The acid mine process is one of the most significant environmental challenges and a major source of water pollution worldwide. AMD and its effects were studied in northwest Turkey where there are several sedimentary and hydrothermal mineral deposits that have been economically extracted. The study area is located in Can county of Canakkale province. Canakkale contains marine, lagoon, and lake sediments precipitated with volcanoclastics that occurred as a result of volcanism, which was active during various periods from the Upper Eocene to Plio-Quaternary. Can county is rich in coal with a total lignite reserve >100 million tons and contains numerous mines that were operated by private companies and later abandoned without any remediation. As a result, human intervention in the natural structure and topography has resulted in large open pits and deterioration in these areas. Abandoned open pit mines typically fill with water from runoff and groundwater discharge, producing artificial lakes. Acid drainage waters from these mines have resulted in the degradation of surface-water quality around Can County. The average pH and electrical conductivity of acid mine lakes (AMLs) in this study were found to be 3.03 and 3831.33 µS cm(-1), respectively. Total iron (Fe) and aluminum (Al) levels were also found to be high (329.77 and 360.67 mg L(-1), respectively). The results show that the concentration of most elements, such as Fe and Al in particular, exceed national and international water-quality standards.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Lagos/análise , Mineração , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise , Metais Pesados/análise , Oligoelementos/análise , Turquia , Movimentos da Água , Qualidade da Água
12.
Environ Monit Assess ; 183(1-4): 77-94, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21336483

RESUMO

The sources of groundwater pollution in Turkey are identified, and pathways of contaminants to groundwater are first described. Then, the effects of groundwater quality on health in Turkey are evaluated. In general, sources of groundwater contamination fall into two main categories: natural and anthropogenic sources. Important sources of natural groundwater pollution in Turkey include geological formations, seawater intrusion, and geothermal fluid(s). The major sources of anthropogenic groundwater contamination are agricultural activities, mining waste, industrial waste, on-site septic tank systems, and pollution from imperfect well constructions. The analysis results revealed that natural contamination due to salt and gypsum are mostly found in Central and Mediterranean regions and arsenic in Aegean region. Geothermal fluids which contain fluoride poses a danger for skeleton, dental, and bone problems, especially in the areas of Denizli, Isparta, and Aydin. Discharges from surface water bodies contaminate groundwater by infiltration. Evidence of such contamination is found in Upper Kizilirmak basin, Gediz basin, and Büyük Melen river basin and some drinking water reservoirs in Istanbul. Additionally, seawater intrusion causes groundwater quality problems in coastal regions, especially in the Aegean coast. Industrial wastes are also polluting surface and groundwater in industrialized regions of Turkey. Deterioration of water quality as a result of fertilizers and pesticides is another major problem especially in the regions of Mediterranean, Aegean, Central Anatolia, and Marmara. Abandoned mercury mines in the western regions of Turkey, especially in Çanakkale, Izmir, Mugla, Kütahya, and Balikesir, cause serious groundwater quality problems.


Assuntos
Água Subterrânea/análise , Poluentes Químicos da Água/toxicidade , Saúde Ambiental , Monitoramento Ambiental , Geografia , Humanos , Turquia
13.
Environ Monit Assess ; 169(1-4): 509-18, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19862636

RESUMO

A two-dimensional finite element model was developed to simulate species of selenium transport in two dimensions in both saturated and unsaturated soil zones. The model considers water, selenate, selenite, and selenomethionine uptake by plants. It also considers adsorption and desorption, oxidation and reduction, volatilization, and chemical and biological transformations of selenate, selenite, and selenomethionine. In addition to simulating water flow, selenate, selenite, and selenomethionine transport, the model also simulates organic and gaseous selenium transport. The developed model was applied to simulate two different observed field data. The simulation of the observed data was satisfactory, with mean absolute error of 48.5 microg/l and mean relative error of 8.9%.


Assuntos
Análise de Elementos Finitos , Modelos Químicos , Selênio/química , Solo/química , Oligoelementos/química , Cinética , Selênio/análise , Oligoelementos/análise
14.
Arch Environ Contam Toxicol ; 58(3): 499-513, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19841961

RESUMO

Widespread and intense zones of silicified, propylitic, and argillic alteration can be found in the Can volcanics of Biga Peninsula, northwest Turkey. Most of the springs in the study area surface out from the boundary between fractured aquifer (silicified zone) and impervious boundary (argillic zone). This study focuses on two such springs in Kirazli area (Kirazli and Balaban springs) with a distinct quality pattern. Accordingly, field parameters (temperature, pH, and electrical conductivity), major anion and cation (sodium, potassium, calcium, magnesium, chloride, bicarbonate, and sulfate), heavy metals (aluminum, arsenic, barium, chromium, cobalt, cupper, iron, lithium, manganese, nickel, lead, and zinc), and isotopes (oxygen-18, deuterium, and tritium) were determined in water samples taken from these springs during 2005 through 2007. The chemical analyses showed that aluminum concentrations were found to be two orders of magnitude greater in Kirazli waters (mean value 13813.25 microg/L). The levels of this element exceeded the maximum allowable limits given in national and international standards for drinking-water quality. In addition, Balaban and Kirazli springs are >55 years old according to their tritium levels; Kirazli spring is older than Balaban spring. Kirazli spring is also more enriched than Balaban spring based in oxygen-18 and deuterium values. Furthermore, Kirazli spring water has been in contact with altered rocks longer than Balaban spring water, according to its relatively high chloride and electrical conductivity values.


Assuntos
Monitoramento Ambiental , Fontes Termais/química , Poluentes Químicos da Água/análise , Poluentes Radioativos da Água/análise , Clima , Solo/análise , Turquia
15.
Arch Environ Contam Toxicol ; 58(4): 935-44, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20012432

RESUMO

Widespread and intense zones of silicified, propylitic, and argillic alteration exist as outcrop around the Biga Peninsula, NW Turkey. Most of the springs in the study area surface out from these altered volcanic rocks. The concentrations of aluminum (Al) in these springs ranged from 13.17 to 15.70 ppm in this region. These high levels of Al were found to exceed the maximum allowable limits (0.2 ppm) depicted in national and international standards of drinking water quality. Therefore, the effect of high Al in water resources on human health was evaluated in this research. A total of 273 people aged above 18 years and living in the Kirazli region (whose water supply is from springs emerging from these alteration zones) and in the Ciplak-Halileli region (whose water supply is provided from an alluvium aquifer) were selected as the research group. For this group, a questionnaire was completed that contained questions on descriptive characteristics of humans and a Mini-Mental State Examination (MMSE) was administered by the authors using the face-to-face interview technique. A neurological examination was then performed by the neurology specialist as a second-stage investigation. Finally, 10 ml of venous blood samples were obtained from these people as a third-stage analysis to determine the serum Al levels together with vitamin B(12), folic acid, and thyroid-stimulating hormone parameters. The result typically revealed that the MMSE score was less in 31.9% and there was no statistically significant difference between the two regions. However, the result also showed that neuropathy in the history (including a careful past medical history) was significantly higher in the Kirazli region.


Assuntos
Alumínio/toxicidade , Água Doce/análise , Poluentes Químicos da Água/toxicidade , Abastecimento de Água/normas , Adulto , Idoso , Alumínio/sangue , Cognição/efeitos dos fármacos , Relação Dose-Resposta a Droga , Monitoramento Ambiental , Monitoramento Epidemiológico , Feminino , Água Doce/química , Humanos , Masculino , Metais Pesados/análise , Pessoa de Meia-Idade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/epidemiologia , Saúde Pública , Inquéritos e Questionários , Turquia/epidemiologia , Poluentes Químicos da Água/sangue , Adulto Jovem
16.
Environ Monit Assess ; 160(1-4): 501-12, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19184495

RESUMO

Agroforesty systems, which are recommended as a management option to lower the shallow groundwater level and to reuse saline subsurface drainage waters from the tile-drained croplands in the drainage-impacted areas of Jan Joaquin Valley of California, have resulted in excessive boron buildup in the soil root zone. To assess the efficacy of the long-term impacts of soil boron buildup in agroforesty systems, a mathematical model was developed to simulate non-conservative boron transport. The developed dynamic two-dimensional finite element model simulates water flow and boron transport in saturated-unsaturated soil system, including boron sorption and boron uptake by root-water extraction processes. The simulation of two different observed field data sets by the developed model is satisfactory, with mean absolute error of 1.5 mg/L and relative error of 6.5%. Application of the model to three different soils shows that boron adsorption is higher in silt loam soil than that in sandy loam and clay loam soils. This result agrees with the laboratory experimental observations. The results of the sensitivity analysis indicate that boron uptake by root-water extraction process influences the boron concentration distribution along the root zone. Also, absorption coefficient and maximum adsorptive capacity of a soil for boron are found to be sensitive parameters.


Assuntos
Agricultura , Boro/análise , Monitoramento Ambiental/métodos , Modelos Teóricos , Poluentes do Solo/análise , Árvores
17.
Environ Monit Assess ; 146(1-3): 157-69, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18204909

RESUMO

The large demand for drinking, irrigation and industrial water in the region of Torbali (Izmir, Turkey) is supplied from groundwater sources. Almost every factory and farm has private wells that are drilled without permission. These cause the depletion of groundwater and limiting the usage of groundwater. This study investigates spatial and temporal change in groundwater quality, relationships between quality parameters, and sources of contamination in Torbali region. For this purpose, samples were collected from 10 different sampling points chosen according to their geological and hydrogeological properties and location relative to factories, between October 2001 and July 2002. Various physical (pH, temperature, EC), chemical (calcium, magnesium, potassium, sodium, chloride, alkalinity, copper, chromium, cadmium, lead, zinc) and organic (nitrate, nitrite, ammonia, COD and cyanide) parameters were monitored. It was observed that the groundwater has bicarbonate alkalinity. Agricultural contamination was determined in the region, especially during the summer. Nitrite and ammonia concentrations were found to be above drinking water standard. Organic matter contamination was also investigated in the study area. COD concentrations were higher than the permissible limits during the summer months of the monitoring period.


Assuntos
Água Doce/química , Fenômenos Geológicos , Abastecimento de Água/análise , Monitoramento Ambiental , Geologia , Turquia
18.
Environ Monit Assess ; 139(1-3): 287-98, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17588209

RESUMO

Lignite powered electric generation plants result in increasing environmental problems associated with gaseous emissions and the disposal of ash residues. Especially, low quality coals with high ash content cause enormous quantities of both gaseous and solid fly ash emissions. The main problem is related to the disposal of fly ash, which, in many cases, contains heavy metals. It is known that toxic trace metals may leach when fly ash is in contact with water. In this study, fly ash samples obtained from the thermal power plant in the town of Can in Turkey were investigated for leachability of metals under different acidic and temperature conditions. The experimental results show that a decrease in pH of the leachant favors the extraction of metal ions from fly ash. A significant increase in the extraction of arsenic, cadmium, chromium, zinc, lead, mercury, and selenium ions from the ash is attributed to the instability of the mineral phases. These heavy metals concentrations increase with respect to increasing acidic conditions and temperature. Peak concentrations, in general, were found at around 30 degrees C.


Assuntos
Carbono/química , Concentração de Íons de Hidrogênio , Metais/isolamento & purificação , Material Particulado/química , Centrais Elétricas , Temperatura , Cinza de Carvão , Metais/química , Turquia
19.
Environ Monit Assess ; 145(1-3): 361-74, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18026847

RESUMO

Tuzla geothermal basin is situated in north-western Turkey on the Biga Peninsula, which is located at the west end of the Northern Anatolian Fault system. Soil and water samples were collected between August 2003 and June 2004 to initiate development of a geochemical profile of surface and subsurface waters in the geothermal basin and radionuclide concentrations in soils. All water samples were found to fall within Turkish Water Quality Class 4, meaning they were remarkably contaminated for any water consumption sector (industrial, human use or agricultural) based on sodium and chloride ions. Such waters could be used only after appropriate water treatment. The water samples are of the chloride type in terms of geochemical evaluation. Preliminary geochemical evidence shows that the N-S flowing part of the Tuzla River acts as a natural barrier within the basin. Heavy metal concentrations in the soil samples show slight elevations, especially those obtained from the east part of the basin where thermal springs are dominant. Geochemical calculations were carried out with PHREEQC software to determine equilibrium concentration of chemical species and saturation indices, by which it is suggested that chloride is the most important ligand to mobilize the heavy metals in the studied system. In addition, the activity concentration and gamma-absorbed dose rates of the terrestrial naturally occurring radionuclides were determined in the soil using gamma-ray spectrometry. The soil activity ranged from 42.77 to 988.66 Bq kg(-1) (averaging 138 Bq kg(-1)) for ( 238 )U, 13.27 to 106.31 Bq kg(-1) (averaging 32.42 Bq kg(-1)) for ( 232 )Th, and 99.28 to 935.36 Bq kg(-1) (averaging 515.44 Bq kg(-1)) for ( 40 )K. The highest value of ( 238 )U was found in the soil samples obtained from an area close to the hot spring.


Assuntos
Radioisótopos/análise , Geologia , Turquia
20.
Environ Monit Assess ; 130(1-3): 389-402, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17072551

RESUMO

The aim of this study was to determine the origin and quality of waters in Troia. For this purpose total of 25 water samples including 2 springs, 14 surfaces and 9 groundwaters, were collected at eight different times. Global positioning system (GPS) was used to determine to coordinates of sampling points. The concentration of 6 minor elements (B, Cu, F, Fe, Pb and Zn), 9 major anions and cations (Na(+), Ca(2+), K(+), Mg(2+), SO(4)(2-), PO(4)(3-), HCO(3)(-), Cl(-) and, CO(3)(2-)) were determined by spectrometric, colorimetric and volumetric methods. Water pH, EC, DO, ORP and TDS were measured in situ using probes. The data showed that the concentrations of most of minor elements were below the EPA and TSE limits except Pb which ranged between 0.001 and 4.832 mg L(-1). Statistically significant relationships (P<0.01 and r>0.70) were observed between Fe and Cu, Cu and K(+), Cu and Ca(2+), B and Na(+), Na(+) and K(+). Assessing the water based on irrigation using Wilcox model showed that some well waters were not suitable for irrigation. Troia water was found to be highly corrosive and the average corrosion coefficients varied from 0.5 to 4.6. According to the Piper and Schoeller diagrams results, the water in Troia was classified as mixed water type.


Assuntos
Monitoramento Ambiental/métodos , Água Doce/química , Agricultura , Água Doce/análise , Sistemas de Informação Geográfica , Metais Pesados/análise , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA