Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 803: 150041, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34500270

RESUMO

Legacy landmines in post-conflict areas are a non-discriminatory lethal hazard and can still be triggered decades after the conflict has ended. Efforts to detect these explosive devices are expensive, time-consuming, and dangerous to humans and animals involved. While methods such as metal detectors and sniffer dogs have successfully been used in humanitarian demining, more tools are required for both site surveying and accurate mine detection. Honeybees have emerged in recent years as efficient bioaccumulation and biomonitoring animals. The system reported here uses two complementary landmine detection methods: passive sampling and active search. Passive sampling aims to confirm the presence of explosive materials in a mine-suspected area by the analysis of explosive material brought back to the colony on honeybee bodies returning from foraging trips. Analysis is performed by light-emitting chemical sensors detecting explosives thermally desorbed from a preconcentrator strip. The active search is intended to be able to pinpoint the place where individual landmines are most likely to be present. Used together, both methods are anticipated to be useful in an end-to-end process for area surveying, suspected hazardous area reduction, and post-clearing internal and external quality control in humanitarian demining.


Assuntos
Substâncias Explosivas , Animais , Abelhas , Bioacumulação , Monitoramento Biológico , Cães , Manejo de Espécimes , Inquéritos e Questionários
2.
Chemosphere ; 273: 129646, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33493813

RESUMO

Humanitarian demining is a worldwide effort and the range of climates and environments prevent any one detection method being suitable for all sites, so more tools are required for safe and efficient explosives sensing. Landmines emit a chemical flux over time, and honeybees can collect the trace residues of explosives (as particles or as vapour) on their body hairs. This capability was exploited using a passive method allowing the honeybees to freely forage in a mined area, where trace explosives present in the environment stuck to the honeybee body, which were subsequently transferred onto an adsorbent material for analysis by a fluorescent polymer sensor. Potential false positive sources were investigated, namely common bee pheromones, the anti-varroa pesticide Amitraz, and the environment around a clean apiary, and no significant response was found to any from the sensor. The mined site gave a substantial response in the optical sensor films, with quenching efficiencies of up to 38%. A model was adapted to estimate the mass of explosives returned to the colony, which may be useful for estimating the number of mines in a given area.


Assuntos
Substâncias Explosivas , Varroidae , Animais , Abelhas , Monitoramento Biológico , Feromônios
3.
Front Plant Sci ; 11: 584822, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240302

RESUMO

As an esthetic trait, ray floret color has a high importance in the development of new sunflower genotypes and their market value. Standard methodology for the evaluation of sunflower ray florets is based on International Union for the Protection of New Varieties of Plants (UPOV) guidelines for sunflower. The major deficiency of this methodology is the necessity of high expertise from evaluators and its high subjectivity. To test the hypothesis that humans cannot distinguish colors equally, six commercial sunflower genotypes were evaluated by 100 agriculture experts, using UPOV guidelines. Moreover, the paper proposes a new methodology for sunflower ray floret color classification - digital UPOV (dUPOV), that relies on software image analysis but still leaves the final decision to the evaluator. For this purpose, we created a new Flower Color Image Analysis (FloCIA) software for sunflower ray floret digital image segmentation and automatic classification into one of the categories given by the UPOV guidelines. To assess the benefits and relevance of this method, accuracy of the newly developed software was studied by comparing 153 digital photographs of F2 genotypes with expert evaluator answers which were used as the ground truth. The FloCIA enabled visualizations of segmentation of ray floret images of sunflower genotypes used in the study, as well as two dominant color clusters, percentages of pixels belonging to each UPOV color category with graphical representation in the CIE (International Commission on Illumination) L∗a∗b∗ (or simply Lab) color space in relation to the mean vectors of the UPOV category. Precision (repeatability) of ray flower color determination was greater between dUPOV based expert color evaluation and software evaluation than between two UPOV based evaluations performed by the same expert. The accuracy of FloCIA software used for unsupervised (automatic) classification was 91.50% on the image dataset containing 153 photographs of F2 genotypes. In this case, the software and the experts had classified 140 out of 153 of images in the same color categories. This visual presentation can serve as a guideline for evaluators to determine the dominant color and to conclude if more than one significant color exists in the examined genotype.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA