Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 9(5): e16037, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206011

RESUMO

The method of affordable colloidal synthesis of nanocrystalline Cu2ZnSnS4 (CZTS) is developed, which is suitable for obtaining bare CZTS nanocrystals (NCs), cation substituted CZTS NCs, and CZTS-based hetero-NCs. For the hetero-NCs, the synthesized in advance NCs of another material are introduced into the reaction solution so that the formation of CZTS takes place preferably on these "seed" NCs. Raman spectroscopy is used as the primary method of structural characterization of the NCs in this work because it is very sensitive to the CZTS structure and allows to probe NCs both in solutions and films. Raman data are corroborated by optical absorption measurements and transmission electron microscopy on selected samples. The CdTe and Ag NCs are found to be good seed NCs, resulting in a comparable or even better quality of the CZTS compound compared to bare CZTS NCs. For Au NCs, on the contrary, no hetero-NCs could be obtained under the given condition. Partial substitution of Zn for Ba during the synthesis of bare CZTS NCs results in a superior structural quality of NCs, while the introduction of Ag for partial substitution of Cu deteriorates the structural quality of the NCs.

2.
Nanotechnology ; 31(50): 505706, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-32924974

RESUMO

Nano-crystalline and amorphous films of graphitized carbon were deposited by electron-beam evaporation of bulk graphite. Structural properties and the size of graphite nanoclusters (L ≈ 1.2-5 nm) in the films were determined from the analysis of their Raman spectra. Electrical properties of the bulk nano-crystalline graphite reference sample and the deposited graphitic carbon films were measured by means of the Hall effect technique within the temperature range from 290 to 420 K. The electrical conductivity σ and Hall mobility µH of all samples exhibited exponential temperature dependences, indicating on the non-metallic behavior. Electrical properties of the amorphous graphitic carbon thin films, deposited at low substrate temperatures (620 and 750 K) were analyzed in the scope of the hopping charge transport mechanism via localized states. We have shown that the charge transport in the bulk and thin film (920 K) nano-crystalline graphite samples is carried out via the tunneling and thermionic emission over potential barriers at the grain boundaries.This paper contributes towards better understanding of coupling between structural and electrical properties of graphitic carbon thin films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA