Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Nutr ; 7: 26, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32318582

RESUMO

Zinc malnutrition is a major issue in developing countries where polished rice is a staple food. With the existing significant genetic variability for high zinc in polished rice, the development of biofortified rice varieties was targeted in India with support from HarvestPlus, Department of Biotechnology, and Indian Council of Agricultural Research of Government of India. Indian Institute of Rice Research (IIRR) facilitates rice varietal release through All India Coordinated Rice Improvement Project (AICRIP) and also supports rice biofortification program in India. Various germplasm sets of several national institutions were characterized at IIRR for their zinc content in brown rice using energy-dispersive X-ray fluorescence spectroscopy indicating the range of zinc to be 7.3 to 52.7 mg/kg. Evaluation of different mapping populations involving wild germplasm, landraces, and varieties for their zinc content showed the feasibility of favorable recombination of high zinc content and yield. Ninety-nine genotypes from germplasm and 344 lines from mapping populations showed zinc content of ≥28 mg/kg in polished rice meeting the target zinc content set by HarvestPlus. Through AICRIP biofortification trial constituted since 2013, 170 test entries were nominated by various national institutions until 2017, and four biofortified rice varieties were released. Only the test entry with target zinc content, yield, and quality parameters is promoted to the next year; thus, each test entry is evaluated for 3 years across 17 to 27 locations for their performance. Multilocation studies of two mapping populations and AICRIP biofortification trials indicated the zinc content to be highly influenced by environment. The bioavailability of a released biofortified rice variety, viz., DRR Dhan 45 was found to twice that of control IR64. The technology efficacy of the four released varieties developed through conventional breeding ranged from 48 to 75% with zinc intake of 38 to be 47% and 46 to 57% of the RDA for male and female, respectively. The observations from the characterization of germplasm and mapping populations for zinc content and development of national evaluation system for the release of biofortified rice varieties have been discussed in the context of the five criteria set by biofortification program.

2.
Sci Rep ; 8(1): 9200, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29907833

RESUMO

With the priority of the low input sustainable rice cultivation for environment friendly agriculture, NUE of rice becomes the need of the hour. A set of 472 rice genotypes comprising landraces and breeding lines were evaluated for two seasons under field conditions with low and recommended nitrogen and >100 landraces were identified with relative higher yield under low nitrogen. Donors were identified for higher N uptake, N translocation into grains and grain yield under low N. Grains on secondary branches, N content in grain and yield appears to be the selection criterion under low N. Through association mapping, using minimum marker set of 50 rice SSR markers, 12 genomic regions were identified for yield and yield associated traits under low nitrogen. Four associated genomic regions on chromosomes 5, 7 and 10 were fine mapped and QTL for yield under low N were identified from the marker delimited regions. Three candidate genes viz., 2-oxoglutarate /malate translocator (Os05g0208000), alanine aminotransferase (Os07g0617800) and pyridoxal phosphate-dependent transferase (Os10g0189600) from QTL regions showed enhanced expression in the genotypes with promising yield under low N. Marker assisted selection using SSR markers associated with three candidate genes identified two stable breeding lines confirmed through multi-location evaluation.


Assuntos
Genoma de Planta , Genótipo , Nitrogênio/metabolismo , Oryza , Locos de Características Quantitativas , Seleção Genética , Produção Agrícola , Marcadores Genéticos , Oryza/genética , Oryza/crescimento & desenvolvimento
3.
Food Chem ; 238: 29-34, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28867097

RESUMO

Diabetes, a chronic hyperglycemic disorder, is a public health concern in India. High glycemic carbohydrate foods are linked to higher risk of diabetes. The chemical composition and in vivo glycemic potential of popular Indian rice varieties namely Jaya, Lalat, NDR-97, PR-113, Salivahana, Sasyasree, Savithri, Tellahamsa, Triguna, Varalu and one hybrid DRRH-3, having wide agronomical and grain morphological features were studied. Nutrient composition varied prominently among different varieties. Resistant starch (RS) content (2.03-2.91%) correlated negatively with the glycemic index (GI) (r=-0.674; p≤0.05) and contributed for 45.5% of GI variability. Lalat, an aromatic traditional rice variety, with 2.91% RS and 27.9% amylose was the only one eliciting low GI of 50 and glycemic load (GL) of 13 while the rest exhibited GI ranging from 70 by Savitri to 80 by Salivahana. Identification of Lalat as a low GI variety is of significance in the dietary prevention and management of diabetes.


Assuntos
Oryza , Glicemia , Carboidratos da Dieta , Índice Glicêmico , Humanos , Índia
4.
J Genet ; 95(4): 895-903, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27994188

RESUMO

This study was carried out to improve the RPHR-1005, a stable restorer line of the popular medium slender grain type rice hybrid, DRRH-3 for bacterial blight (BB) and blast resistance through marker-assisted backcross breeding (MABB). Two major BB resistance genes, Xa21 and Xa33 and a major blast resistance gene, Pi2 were transferred to RPHR-1005 as two individual crosses. Foreground selection for Xa21, Xa33, Pi2, Rf3 and Rf4 was done by using gene-specific functional markers, while 59 simple sequence repeat (SSR) markers polymorphic between the donors and recipient parents were used to select the best plant possessing target resistance genes at each backcross generation. Backcrossing was continued till BC2F2 and a promising homozygous backcross derived line possessing Xa21+ Pi2 and another possessing Xa33 were intercrossed to stack the target resistance genes into the genetic background of RPHR-1005. At ICF4, 10 promising lines possessing three resistance genes in homozygous condition along with fine-grain type, complete fertility restoration, better panicle exertion and taller plant type (compared to RPHR-1005) were identified.


Assuntos
Bactérias , Resistência à Doença/genética , Marcadores Genéticos , Oryza/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Cruzamento , Genes de Plantas , Genótipo , Hibridização Genética , Repetições de Microssatélites , Fenótipo , Seleção Genética
5.
Front Plant Sci ; 7: 1530, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27807437

RESUMO

Advanced backcross introgression lines (BILs) developed from crosses of Oryza sativa var. Swarna/O. nivara accessions were grown and evaluated for yield and related traits. Trials were conducted for consecutive three seasons in field conditions in a randomized complete block design with three replications. Data on yield traits under irrigated conditions were analyzed using the Additive Main Effect and Multiplicative Interaction (AMMI), Genotype and Genotype × Environment Interaction (GGE) and modified rank-sum statistic (YSi) for yield stability. BILs viz., G3 (14S) and G6 (166S) showed yield stability across the seasons along with high mean yield performance. G3 is early in flowering with high yield and has good grain quality and medium height, hence could be recommended for most of the irrigated locations. G6 is a late duration genotype, with strong culm strength, high grain number and panicle weight. G6 has higher yield and stability than Swarna but has Swarna grain type. Among the varieties tested DRRDhan 40 and recurrent parent Swarna showed stability for yield traits across the seasons. The component traits thousand grain weight, panicle weight, panicle length, grain number and plant height explained highest genotypic percentage over environment and interaction factors and can be prioritized to dissect stable QTLs/ genes. These lines were genotyped using microsatellite markers covering the entire rice genome and also using a set of markers linked to previously reported yield QTLs. It was observed that wild derived lines with more than 70% of recurrent parent genome were stable and showed enhanced yield levels compared to genotypes with higher donor genome introgressions.

6.
Physiol Mol Biol Plants ; 21(2): 301-4, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25964723

RESUMO

Pib is one of significant rice blast resistant genes, which provides resistance to wide range of isolates of rice blast pathogen, Magnaporthe oryzae. Identification and isolation of novel and beneficial alleles help in crop enhancement. Allele mining is one of the best strategies for dissecting the allelic variations at candidate gene and identification of novel alleles. Hence, in the present study, Pib was analyzed by allele mining strategy, and coding and non-coding (upstream and intron) regions were examined to identify novel Pib alleles. Allelic sequences comparison revealed that nucleotide polymorphisms at coding regions affected the amino acid sequences, while the polymorphism at upstream (non-coding) region affected the motifs arrangements. Pib alleles from resistant landraces, Sercher and Krengosa showed better resistance than Pib donor variety, might be due to acquired mutations, especially at LRR region. The evolutionary distance, Ka/Ks and phylogenetic analyzes also supported these results. Transcription factor binding motif analysis revealed that Pib (Sr) had a unique motif (DPBFCOREDCDC3), while five different motifs differentiated the resistance and susceptible Pib alleles. As the Pib is an inducible gene, the identified differential motifs helps to understand the Pib expression mechanism. The identified novel Pib resistant alleles, which showed high resistance to the rice blast, can be used directly in blast resistance breeding program as alternative Pib resistant sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA