Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Hum Neurosci ; 18: 1339728, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38501039

RESUMO

Visual working memory (WM) engages several nodes of a large-scale network that includes frontal, parietal, and visual regions; however, little is understood about how these regions interact to support WM behavior. In particular, it is unclear whether network dynamics during WM maintenance primarily represent feedforward or feedback connections. This question has important implications for current debates about the relative roles of frontoparietal and visual regions in WM maintenance. In the current study, we investigated the network activity supporting WM using MEG data acquired while healthy subjects performed a multi-item delayed estimation WM task. We used computational modeling of behavior to discriminate correct responses (high accuracy trials) from two different types of incorrect responses (low accuracy and swap trials), and dynamic causal modeling of MEG data to measure effective connectivity. We observed behaviorally dependent changes in effective connectivity in a brain network comprising frontoparietal and early visual areas. In comparison with high accuracy trials, frontoparietal and frontooccipital networks showed disrupted signals depending on type of behavioral error. Low accuracy trials showed disrupted feedback signals during early portions of WM maintenance and disrupted feedforward signals during later portions of maintenance delay, while swap errors showed disrupted feedback signals during the whole delay period. These results support a distributed model of WM that emphasizes the role of visual regions in WM storage and where changes in large scale network configurations can have important consequences for memory-guided behavior.

2.
Front Robot AI ; 10: 1193388, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779578

RESUMO

Introduction: Handwriting is a complex task that requires coordination of motor, sensory, cognitive, memory, and linguistic skills to master. The extent these processes are involved depends on the complexity of the handwriting task. Evaluating the difficulty of a handwriting task is a challenging problem since it relies on subjective judgment of experts. Methods: In this paper, we propose a machine learning approach for evaluating the difficulty level of handwriting tasks. We propose two convolutional neural network (CNN) models for single- and multilabel classification where single-label classification is based on the mean of expert evaluation while the multilabel classification predicts the distribution of experts' assessment. The models are trained with a dataset containing 117 spatio-temporal features from the stylus and hand kinematics, which are recorded for all letters of the Arabic alphabet. Results: While single- and multilabel classification models achieve decent accuracy (96% and 88% respectively) using all features, the hand kinematics features do not significantly influence the performance of the models. Discussion: The proposed models are capable of extracting meaningful features from the handwriting samples and predicting their difficulty levels accurately. The proposed approach has the potential to be used to personalize handwriting learning tools and provide automatic evaluation of the quality of handwriting.

3.
Front Neural Circuits ; 15: 716965, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616279

RESUMO

Working memory function is severely limited. One key limitation that constrains the ability to maintain multiple items in working memory simultaneously is so-called swap errors. These errors occur when an inaccurate response is in fact accurate relative to a non-target stimulus, reflecting the failure to maintain the appropriate association or "binding" between the features that define one object (e.g., color and location). The mechanisms underlying feature binding in working memory remain unknown. Here, we tested the hypothesis that features are bound in memory through synchrony across feature-specific neural assemblies. We built a biophysical neural network model composed of two one-dimensional attractor networks - one for color and one for location - simulating feature storage in different cortical areas. Within each area, gamma oscillations were induced during bump attractor activity through the interplay of fast recurrent excitation and slower feedback inhibition. As a result, different memorized items were held at different phases of the network's oscillation. These two areas were then reciprocally connected via weak cortico-cortical excitation, accomplishing binding between color and location through the synchronization of pairs of bumps across the two areas. Encoding and decoding of color-location associations was accomplished through rate coding, overcoming a long-standing limitation of binding through synchrony. In some simulations, swap errors arose: "color bumps" abruptly changed their phase relationship with "location bumps." This model, which leverages the explanatory power of similar attractor models, specifies a plausible mechanism for feature binding and makes specific predictions about swap errors that are testable at behavioral and neurophysiological levels.


Assuntos
Memória de Curto Prazo , Redes Neurais de Computação , Biofísica , Neurofisiologia
4.
IEEE Trans Haptics ; 14(3): 626-634, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33769937

RESUMO

Handwriting is an essential skill for developing sensorimotor and intellectual skills in children. Handwriting constitutes a complex activity relying on cognitive, visual-motor, memory and linguistic abilities, and is therefore challenging to master, especially for children with learning difficulties such as those with cognitive, sensorimotor or memory deficits. Recently-emerged haptic guidance systems have a potential to facilitate the acquisition of handwriting skills in both adults and children. In this paper we present a longitudinal experimental study that examined the effects of haptic guidance to improve handwriting skills in children with cognitive and fine motor delays as a function of the handwriting complexity in terms of visual familiarity and haptic difficulty. A haptic-based handwriting training platform that provides haptic guidance along the trajectory of a handwriting task was utilized. 12 children with cognitive and fine motor delays defined in terms of intellectual difficulty (IQ score) and mild motor difficulty in pincer grasp control, participated in the study. Children were divided into two groups, a target group and a control group. The target group completed haptic-guided training and pencil-and-paper test whereas the control group took only the pencil-and-paper test without any training. A total of 32 handwriting tasks was used in the study where 16 tasks were used for training while the entire 32 tasks were completed for evaluation. Results demonstrated that the target group performed significantly better than the control group for handwriting tasks that are visually familiar but haptically difficult (Wilcoxon signed-rank test, p 0.01). An improvement was also seen in the performance of untrained tasks as well as trained tasks (Spearman's linear correlation coefficient, 0.667; p = 0.05). In addition to confirming that haptic guidance can significantly improve motor functions, this study revealed a significant effect of task difficulty (visual familiarity and haptic complexity) on the effectiveness of haptic guidance for handwriting skill acquisition for children with cognitive and fine motor delays.


Assuntos
Escrita Manual , Destreza Motora , Adulto , Criança , Cognição , Força da Mão , Humanos , Reconhecimento Psicológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA