Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4037, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740793

RESUMO

Laser-driven plasma accelerators provide tabletop sources of relativistic electron bunches and femtosecond x-ray pulses, but usually require petawatt-class solid-state-laser pulses of wavelength λL ~ 1 µm. Longer-λL lasers can potentially accelerate higher-quality bunches, since they require less power to drive larger wakes in less dense plasma. Here, we report on a self-injecting plasma accelerator driven by a long-wave-infrared laser: a chirped-pulse-amplified CO2 laser (λL ≈ 10 µm). Through optical scattering experiments, we observed wakes that 4-ps CO2 pulses with < 1/2 terawatt (TW) peak power drove in hydrogen plasma of electron density down to 4 × 1017 cm-3 (1/100 atmospheric density) via a self-modulation (SM) instability. Shorter, more powerful CO2 pulses drove wakes in plasma down to 3 × 1016 cm-3 that captured and accelerated plasma electrons to relativistic energy. Collimated quasi-monoenergetic features in the electron output marked the onset of a transition from SM to bubble-regime acceleration, portending future higher-quality accelerators driven by yet shorter, more powerful pulses.

2.
Sci Rep ; 9(1): 532, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679471

RESUMO

The generation of X-rays and γ-rays based on synchrotron radiation from free electrons, emitted in magnet arrays such as undulators, forms the basis of much of modern X-ray science. This approach has the drawback of requiring very high energy, up to the multi-GeV-scale, electron beams, to obtain the required photon energy. Due to the limit in accelerating gradients in conventional particle accelerators, reaching high energy typically demands use of instruments exceeding 100's of meters in length. Compact, less costly, monochromatic X-ray sources based on very high field acceleration and very short period undulators, however, may enable diverse, paradigm-changing X-ray applications ranging from novel X-ray therapy techniques to active interrogation of sensitive materials, by making them accessible in energy reach, cost and size. Such compactness and enhanced energy reach may be obtained by an all-optical approach, which employs a laser-driven high gradient accelerator based on inverse free electron laser (IFEL), followed by a collision point for inverse Compton scattering (ICS), a scheme where a laser is used to provide undulator fields. We present an experimental proof-of-principle of this approach, where a TW-class CO2 laser pulse is split in two, with half used to accelerate a high quality electron beam up to 84 MeV through the IFEL interaction, and the other half acts as an electromagnetic undulator to generate up to 13 keV X-rays via ICS. These results demonstrate the feasibility of this scheme, which can be joined with other techniques such as laser recirculation to yield very compact photon sources, with both high peak and average brilliance, and with energies extending from the keV to MeV scale. Further, use of the IFEL acceleration with the ICS interaction produces a train of high intensity X-ray pulses, thus enabling a unique tool synchronized with a laser pulse for ultra-fast strobe, pump-probe experimental scenarios.

3.
Phys Rev Lett ; 120(11): 114802, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29601767

RESUMO

We present results of an experiment showing the first successful demonstration of a cascaded microbunching scheme. Two modulator-chicane prebunchers arranged in series and a high power mid-IR laser seed are used to modulate a 52 MeV electron beam into a train of sharp microbunches phase locked to the external drive laser. This configuration is shown to greatly improve matching of the beam into the small longitudinal phase space acceptance of short-wavelength accelerators. We demonstrate trapping of nearly all (96%) of the electrons in a strongly tapered inverse free-electron laser accelerator, with an order-of-magnitude reduction in injection losses compared to the classical single-buncher scheme. These results represent a critical advance in laser-based longitudinal phase space manipulations and find application in high gradient advanced acceleration as well as in high peak and average power coherent radiation sources.

4.
Phys Rev Lett ; 117(17): 174801, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27824445

RESUMO

We present results of an experiment where, using a 200 GW CO_{2} laser seed, a 65 MeV electron beam was decelerated down to 35 MeV in a 54-cm-long strongly tapered helical magnetic undulator, extracting over 30% of the initial electron beam energy to coherent radiation. These results, supported by simulations of the radiation field evolution, demonstrate unparalleled electro-optical conversion efficiencies for a relativistic beam in an undulator field and represent an important step in the development of high peak and average power coherent radiation sources.

5.
Nat Commun ; 5: 4928, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25222026

RESUMO

Compact, table-top sized accelerators are key to improving access to high-quality beams for use in industry, medicine and academic research. Among laser-based accelerating schemes, the inverse free-electron laser (IFEL) enjoys unique advantages. By using an undulator magnetic field in combination with a laser, GeV m(-1) gradients may be sustained over metre-scale distances using laser intensities several orders of magnitude less than those used in laser wake-field accelerators. Here we show for the first time the capture and high-gradient acceleration of monoenergetic electron beams from a helical IFEL. Using a modest intensity (~10(13) W cm(-2)) laser pulse and strongly tapered 0.5 m long undulator, we demonstrate >100 MV m(-1) accelerating gradient, >50 MeV energy gain and excellent output beam quality. Our results pave the way towards compact, tunable GeV IFEL accelerators for applications such as driving soft X-ray free-electron lasers and producing γ-rays by inverse Compton scattering.

6.
Phys Rev Lett ; 112(4): 045001, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24580460

RESUMO

We demonstrate experimentally that a relativistic electron bunch shaped with a sharp rising edge drives plasma wakefields with one to seven periods along the bunch as the plasma density is increased. The plasma density is varied in the 10(15)-10(17) cm(-3) range. The wakefields generation is observed after the plasma as a periodic modulation of the correlated energy spectrum of the incoming bunch. We choose a low bunch charge of 50 pC for optimum visibility of the modulation at all plasma densities. The longitudinal wakefields creating the modulation are in the MV/m range and are indirect evidence of the generation of transverse wakefields that can seed the self-modulation instability, although the instability does not grow significantly over the short plasma length (2 cm). We show that the seeding provides a phase reference for the wakefields, a necessary condition for the deterministic external injection of a witness bunch in an accelerator. This electron work supports the concept of similar experiments in the future, e.g., SMI experiments using long bunches of relativistic protons.

7.
Phys Rev Lett ; 111(13): 134802, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24116784

RESUMO

A strong energy modulation in an electron bunch passing through a dielectric-lined waveguide was recently demonstrated in Antipov et al., Phys. Rev. Lett. 108, 144801 (2012). In this Letter, we demonstrate a successful conversion of this energy modulation into a beam density modulation, and the formation of a series of microbunches with a subpicosecond periodicity by means of magnetic optics (chicane). A strong coherent transition radiation signal produced by the microbunches is obtained and the tunability of its carrier frequency in the 0.68-0.9 THz range by regulating the energy chirp in the incoming electron bunch is demonstrated using infrared interferometry. A tabletop, compact, tunable, and narrowband source of intense THz radiation based on this technology is proposed.

8.
Phys Rev Lett ; 109(18): 185007, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23215291

RESUMO

Current filamentation instability is observed and studied in a laboratory environment with a 60 MeV electron beam and a plasma capillary discharge. Multiple filaments are observed and imaged transversely at the plasma exit with optical transition radiation. By varying the plasma density the transition between single and multiple filaments is found to be k(p)σ(r)~2.2. Scaling of the transverse filament size with the plasma skin depth is predicted in theory and observed over a range of plasma densities. Lowering the bunch charge, and thus the bunch density, suppresses the instability.

9.
Phys Rev Lett ; 108(24): 244801, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23004279

RESUMO

We report first evidence of wakefield acceleration of a relativistic electron beam in a dielectric-lined slab-symmetric structure. The high energy tail of a ∼60 MeV electron beam was accelerated by ∼150 keV in a 2 cm-long, slab-symmetric SiO2 waveguide, with the acceleration or deceleration clearly visible due to the use of a beam with a bifurcated longitudinal distribution that serves to approximate a driver-witness beam pair. This split-bunch distribution is verified by longitudinal reconstruction analysis of the emitted coherent transition radiation. The dielectric waveguide structure is further characterized by spectral analysis of the emitted coherent Cherenkov radiation at THz frequencies, from a single electron bunch, and from a relativistic bunch train with spacing selectively tuned to the second longitudinal mode (TM02). Start-to-end simulation results reproduce aspects of the electron beam bifurcation dynamics, emitted THz radiation properties, and the observation of acceleration in the dielectric-lined, slab-symmetric waveguide.

10.
Phys Rev Lett ; 106(1): 014801, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21231748

RESUMO

We report on the acceleration of impurity-free quasimononenergetic proton beams from an initially gaseous hydrogen target driven by an intense infrared (λ=10 µm) laser. The front surface of the target was observed by optical probing to be driven forward by the radiation pressure of the laser. A proton beam of ∼MeV energy was simultaneously recorded with narrow energy spread (σ∼4%), low normalized emittance (∼8 nm), and negligible background. The scaling of proton energy with the ratio of intensity over density (I/n) confirms that the acceleration is due to the radiation pressure driven shock.

11.
Phys Rev Lett ; 101(5): 054801, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18764397

RESUMO

We demonstrate that trains of subpicosecond electron microbunches, with subpicosecond spacing, can be produced by placing a mask in a region of the beam line where the beam transverse size is dominated by the correlated energy spread. We show that the number, length, and spacing of the microbunches can be controlled through the parameters of the beam and the mask. Such microbunch trains can be further compressed and accelerated and have applications to free electron lasers and plasma wakefield accelerators.

12.
Philos Trans A Math Phys Eng Sci ; 364(1840): 611-22, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16483952

RESUMO

The staged electron laser acceleration (STELLA) experiment demonstrated staging between two laser-driven devices, high trapping efficiency of microbunches within the accelerating field and narrow energy spread during laser acceleration. These are important for practical laser-driven accelerators. STELLA used inverse free electron lasers, which were chosen primarily for convenience. Nevertheless, the STELLA approach can be applied to other laser acceleration methods, in particular, laser-driven plasma accelerators. STELLA is now conducting experiments on laser wakefield acceleration (LWFA). Two novel LWFA approaches are being investigated. In the first one, called pseudo-resonant LWFA, a laser pulse enters a low-density plasma where nonlinear laser/plasma interactions cause the laser pulse shape to steepen, thereby creating strong wakefields. A witness e-beam pulse probes the wakefields. The second one, called seeded self-modulated LWFA, involves sending a seed e-beam pulse into the plasma to initiate wakefield formation. These wakefields are amplified by a laser pulse following shortly after the seed pulse. A second e-beam pulse (witness) follows the seed pulse to probe the wakefields. These LWFA experiments will also be the first ones driven by a CO(2) laser beam.

13.
Phys Rev Lett ; 95(5): 054801, 2005 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-16090882

RESUMO

Observation of ultrawide bandwidth, up to 15% full-width, high-gain operation of a self-amplified spontaneous emission free-election laser (SASE FEL) is reported. This type of lasing is obtained with a strongly chirped beam (deltaE/E approximately 1.7%) emitted from the accelerator. Because of nonlinear pulse compression during transport, a short, high current bunch with strong mismatch errors is injected into the undulator, giving high FEL gain. Start-to-end simulations reproduce key features of the measurements and provide insight into mechanisms, such as angular spread in emitted photon and electron trajectory distributions, which yield novel features in the radiation spectrum.

14.
Phys Rev Lett ; 92(5): 054801, 2004 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-14995313

RESUMO

Laser-driven electron accelerators (laser linacs) offer the potential for enabling much more economical and compact devices. However, the development of practical and efficient laser linacs requires accelerating a large ensemble of electrons together ("trapping") while keeping their energy spread small. This has never been realized before for any laser acceleration system. We present here the first demonstration of high-trapping efficiency and narrow energy spread via laser acceleration. Trapping efficiencies of up to 80% and energy spreads down to 0.36% (1 sigma) were demonstrated.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(6 Pt 2): 066501, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16241361

RESUMO

VISA (Visible to Infrared SASE Amplifier) is a high-gain self-amplified spontaneous emission (SASE) free-electron laser (FEL), which achieved saturation at 840 nm within a single-pass 4-m undulator. The experiment was performed at the Accelerator Test Facility at BNL, using a high brightness 70-MeV electron beam. A gain length shorter than 18 cm has been obtained, yielding a total gain of 2 x 10(8) at saturation. The FEL performance, including the spectral, angular, and statistical properties of SASE radiation, has been characterized for different electron beam conditions. Results are compared to the three-dimensional SASE FEL theory and start-to-end numerical simulations of the entire injector, transport, and FEL systems. An agreement between simulations and experimental results has been obtained at an unprecedented level of detail.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(3 Pt 2B): 036503, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12366273

RESUMO

Electron beam microbunching in both the fundamental and second harmonic in a high-gain self-amplified spontaneous emission free-electron laser (SASE FEL) was experimentally characterized using coherent transition radiation. The microbunching factors for both modes (b(1) and b(2)) approach unity, an indication of FEL saturation. These measurements are compared to the predictions of FEL simulations. The simultaneous capture of the microbunching and SASE radiation for individual micropulses correlate the longitudinal electron beam structure with the FEL gain.

17.
Phys Rev Lett ; 89(17): 174801, 2002 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-12398674

RESUMO

An experiment has been carried out at the Brookhaven Accelerator Test Facility to investigate the effect of a surface-roughness wakefield in narrow beam tubes with artificially created bumps. The measurements show that the synchronous modes decay significantly due to the randomization of the roughness pattern. It is pointed out that this decay mechanism has not been investigated in the previous experiment at DESY and the investigators' conclusion does not apply for surface-roughness wakefields in real surfaces.

18.
Phys Rev Lett ; 88(20): 204801, 2002 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-12005570

RESUMO

Nonlinear harmonic radiation was observed using the VISA self-amplified, spontaneous emission (SASE) free-electron laser (FEL) at saturation. The gain lengths, spectra, and energies of the three lowest SASE FEL modes were experimentally characterized. The measured nonlinear harmonic gain lengths and center spectral wavelengths decrease with harmonic number, n, which is consistent with nonlinear harmonic theory. Both the second and third nonlinear harmonics energies are about 1% of the fundamental energy. These experimental results demonstrate for the first time the feasibility of using nonlinear harmonic SASE FEL radiation to produce coherent, femtosecond x rays.

19.
Opt Lett ; 27(3): 164-6, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18007743

RESUMO

We report laser-induced damage thresholds (LIDTs) at chemical vapor deposition (CVD)-grown diamond surfaces for 200-ps CO(2) laser pulses, obtained with photoacoustic diagnostics. The results are compared with those at ZnSe and Ge surfaces under the same experimental condition. For 200-ps laser pulses, CVD diamond, ZnSe, and Ge were measured and found to have damage fluences of 1.2, 0.45, and 0.2 J/cm(2) , respectively, for a laser waist radius of 134 mum. Acoustic measurement indicated a relatively large variation in the LIDT of the CVD-grown diamond because of its polycrystalline structure.

20.
Phys Rev Lett ; 86(26 Pt 1): 5902-5, 2001 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-11415390

RESUMO

We report on an experimental investigation characterizing the output of a high-gain harmonic-generation (HGHG) free-electron laser (FEL) at saturation. A seed CO2 laser at a wavelength of 10.6 microm was used to generate amplified FEL output at 5.3 microm. Measurement of the frequency spectrum, pulse duration, and correlation length of the 5.3 microm output verified that the light is longitudinally coherent. Investigation of the electron energy distribution and output harmonic energies provides evidence for saturated HGHG FEL operation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA