RESUMO
In vitro studies offer the insights for the understanding of the mechanisms at the tissue-implant interface that will provide an effective functioning in vivo. The good biocompatibility of zirconium makes a good candidate for biomedical applications and the attractive in vivo performance is mainly due to the presence of a protective oxide layer. The aim of this study is to evaluate by in vitro and in vivo approach, the influence of surface modification achieved by anodisation at 30 and 60V on zirconium implants on the first steps of the osseointegration process. In this study cell attachment, proliferation and morphology of mouse myoblast C2C12-GFP and in mouse osteoprogenitor MC3T3-E1 cells was evaluated. Also, together with the immune system response, osteoclast differentiation and morphology with RAW 264.7 murine cell line were analysed. It was found that anodisation treatment at 60V enhanced cell spreading and the osteoblastic and osteoclastic cells morphology, showing a strong dependence on the surface characteristics. In vivo tests were performed in a rat femur osteotomy model. Dynamical and static histological and histomorphometric analyses were developed 15 and 30days after surgery. Newly formed bone around Zr60V implants showed a continuous newly compact and homogeneous bone just 15 after surgery, as judged by the enhanced thickness and mineralization rate. The results indicate that anodising treatment at 60V could be an effective improvement in the osseointegration of zirconium by stimulating adhesion, proliferation, morphology, new bone thickness and bone mineral apposition, making zirconium an emerging candidate material for biomedical applications.
Assuntos
Zircônio/química , Animais , Linhagem Celular , Proliferação de Células , Masculino , Camundongos , Microscopia Eletrônica de Varredura , Osteoblastos/citologia , Osteoblastos/ultraestrutura , Osteoclastos/citologia , Osteoclastos/ultraestrutura , Osteogênese , RatosRESUMO
The mechanical properties and good biocompatibility of zirconium and some of its alloys make these materials good candidates for biomedical applications. The attractive in vivo performance of zirconium is mainly due to the presence of a protective oxide layer. In this preliminary study, the surface of pure zirconium modified by anodisation in acidic media at low potentials to enhance its barrier protection given by the oxides and osseointegration. Bare, commercially pure zirconium cylinders were compared to samples anodised at 30 V through electrochemical tests and scanning electron microscopy (SEM). For both conditions, in vivo tests were performed in a rat tibial osteotomy model. The histological features and fluorochrome-labelling changes of newly bone formed around the implants were evaluated on the non-decalcified sections 63 days after surgery. Electrochemical tests and SEM images show that the anodisation treatment increases the barrier effect over the material and the in vivo tests show continuous newly formed bone around the implant with a different amount of osteocytes in their lacunae depending on the region. There was no significant change in bone thickness around either kind of implant but the anodised samples had a significantly higher mineral apposition, suggesting that the anodisation treatment stimulates and assists the osseointegration process. We conclude that anodisation treatment at 30 V can stimulate the implant fixation in a rat model, making zirconium a strong candidate material for permanent implants.
RESUMO
Surface modification of surgical stainless steel implants by sol gel coatings has been proposed as a tool to generate a surface that besides being protective could also create a "bioactive" interface to generate a natural bonding between the metal surface and the existing bone. The aim of this work is to analyze the quality and bone formation around hybrid bioactive coatings containing glass-ceramic particles, made by sol-gel process on 316L stainless steel used as permanent implant in terms of mineralization, calcium content and bone maturity with micro Raman, X-ray microfluorescence and X-ray absorption techniques. Uncoated implants seem to generate a thin bone layer at the beginning of osseointegration process and then this layer being separated from the surface with time. The hybrid coatings without glass-ceramic particles generate new bone around implants, with high concentration of Ca and P at the implant/tissue interface. This fact seems to be related with the presence of silica nanoparticles in the layer. The addition of bioactive particles promotes and enhances the bone quality with a homogeneous Ca and P content and a low rate of beta carbonate substitution and crystallinity, similar to young and mechanical resistant bone.