RESUMO
ABSTRACT: Many APRNs are not familiar with Mycoplasma genitalium, even if it is included on a sexually transmitted infection screening panel. This article briefly outlines prevalence, asymptomatic infection, clinical manifestations, diagnostics, and treatment.
Assuntos
Infecções por Mycoplasma , Mycoplasma genitalium , Infecções Sexualmente Transmissíveis , Humanos , Programas de Rastreamento , Infecções por Mycoplasma/diagnóstico , Infecções por Mycoplasma/tratamento farmacológico , Infecções por Mycoplasma/epidemiologia , Prevalência , Infecções Sexualmente Transmissíveis/epidemiologiaRESUMO
ABSTRACT: Barriers to intrauterine device use include cost, absence of qualified providers, the lack of simplified insertion protocols, cultural hesitation, and misconceptions of appropriateness of use. This article outlines how NPs can eliminate practice barriers to intrauterine device use and prevent unintended pregnancy.
Assuntos
Dispositivos Intrauterinos , Feminino , Humanos , GravidezRESUMO
ABSTRACT: Despite advances in screening and treatment for syphilis, the US has seen increased incidence of the disease in the past decade. This article gives an overview of incidence, risk factors, clinical manifestations, assessment, screening, treatment, and prevention of syphilis.
Assuntos
Sífilis , Humanos , Incidência , Programas de Rastreamento , Fatores de Risco , Sífilis/diagnóstico , Sífilis/epidemiologiaRESUMO
Escherichia coli O157:H7 and Salmonella enterica are leading causes of foodborne outbreaks linked to fresh produce. Both species can enter the "viable but nonculturable" (VBNC) state that precludes detection using conventional culture-based or molecular methods. In this study, we assessed propidium monoazide-quantitative PCR (PMA-qPCR) assays and novel methods combining PMA and loop-mediated isothermal amplification (LAMP) for the detection and quantification of VBNC E. coli O157:H7 and S. enterica in fresh produce. The performance of PMA-LAMP assays targeting the wzy gene of E. coli O157:H7 and the agfA gene of S. enterica and the performance of PMA-qPCR assays were compared in pure culture and spiked tomato, lettuce, and spinach. No cross-reaction was observed in the specificity tests. The values representing the limit of detection (LOD) seen with PMA-LAMP were 9.0 CFU/reaction for E. coli O157:H7 and 4.6 CFU/reaction for S. enterica in pure culture and were 5.13 × 103 or 5.13 × 104 CFU/g for VBNC E. coli O157:H7 and 1.05 × 104 or 1.05 × 105 CFU/g for VBNC S. enterica in fresh produce, representing results comparable to those obtained by PMA-qPCR. Standard curves showed correlation coefficients ranging from 0.925 to 0.996, indicating a good quantitative capacity of PMA-LAMP for determining populations of both bacterial species in the VBNC state. The PMA-LAMP assay was completed with considerable economy of time (30 min versus 1 h) and achieved sensitivity and quantitative capacity comparable to those seen with a PMA-qPCR assay. PMA-LAMP is a rapid, sensitive, and robust method for the detection and quantification of VBNC E. coli O157:H7 and S. enterica in fresh produce.IMPORTANCE VBNC pathogenic bacteria pose a potential risk to the food industry because they do not multiply on routine microbiological media and thus can evade detection in conventional plating assays. Both E. coli O157:H7 and S. enterica have been reported to enter the VBNC state under a range of environmental stress conditions and to resuscitate under favorable conditions and are a potential cause of human infections. PMA-LAMP methods developed in this study provide a rapid, sensitive, and specific way to determine levels of VBNC E. coli O157:H7 and S. enterica in fresh produce, which potentially decreases the risks related to the consumption of fresh produce contaminated by enteric pathogens in this state. PMA-LAMP can be further applied in the field study to enhance our understanding of the fate of VBNC pathogens in the preharvest and postharvest stages of fresh produce.
Assuntos
Escherichia coli O157/isolamento & purificação , Microbiologia de Alimentos/métodos , Viabilidade Microbiana , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Salmonella enterica/isolamento & purificação , Azidas/química , Lactuca/microbiologia , Solanum lycopersicum/microbiologia , Propídio/análogos & derivados , Propídio/química , Spinacia oleracea/microbiologiaRESUMO
ABSTRACT: Antimicrobial seed treatments recommended by Canadian guidance for sprouted vegetable production (2,000 ppm of hypochlorite for 15 to 20 min or 6 to 10% hydrogen peroxide for 10 min at room temperature) are not fully compliant with organic production principles. We investigated the effect of a sequential treatment consisting of a 10-min soak at 50°C in water followed by exposure to a 2.0% H2O2 plus 0.1% AcOH sanitizing solution against Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica inoculated onto alfalfa and radish seed. The sequential treatment was as effective as the recommended treatments and could reduce populations of all three species by a minimum of 3 log CFU/g using a reduced (1:2) ratio of seed to sanitizing solution and low concentrations of sanitizers approved for use in organic food production. However, the efficacy of all the treatments examined in this work was considerably reduced by storage of the seed for 4 weeks at either 11 or 75% relative humidity prior to treatment and assessment. None of the treatments could eradicate the target pathogens from seed, irrespective of time elapsed since inoculation. The results of this work suggest that the effect of storage should be considered in the assessment of antimicrobial treatments for sprouting vegetable seed.
Assuntos
Desinfecção/métodos , Manipulação de Alimentos/métodos , Peróxido de Hidrogênio/farmacologia , Medicago sativa , Raphanus , Canadá , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Alimentos Orgânicos , Germinação , Medicago sativa/microbiologia , Oxidantes/farmacologia , Raphanus/microbiologia , SementesRESUMO
Preharvest contamination with bacteria borne by irrigation water may result in leafy vegetables serving as vehicles for transmission of Shiga toxin-producing Escherichia coli (STEC) to humans. The influence of starvation-associated stress on the behavior of non-toxin-producing strains of E. coli serotype O157:H7 and serotypes O26, O103, O111, and O145 was examined subsequent to their introduction to the phyllosphere of field-grown romaine lettuce as inocula simulating starved (96 h in sterile deionized water) and nutrient-depleted (24 h broth culture) cells. As with E. coli O157:H7, leaf populations of the non-O157 strains declined rapidly during the first 72 h postinoculation, displaying the biphasic decay curve typical of serotype O157:H7 isolates. Preinoculation treatment appeared not to influence decay rates greatly (P > 0.5), but strain-specific differences (persistence period and attachment proficiency) indicated that serotype O103:H2 strain PARC445 was a better survivor. Also assessed was the impact of preinoculation treatment on phenotypes key to leaf colonization and survival and the expression of starvation stress-associated genes. The 96-h starvation period enhanced biofilm formation in one strain but reduced motility and autoinducer 2 formation in all five study strains relative to those characteristics in stationary-phase cells. Transcription of rpoS, dps, uspA, and gapA was reduced significantly (P < 0.05) in starvation-stressed cells relative to that for exponential- and stationary-phase cultures. Strain-specific differences were observed; serotype O103:H2 PARC445 had greater downturns than did serotype O157:H7 and other non-O157 strains. Within this particular cohort, the behavior of the representative serotype O157:H7 strain, PARC443 (ATCC 700728), was not predictive of behavior of non-O157 members of this STEC group.
Assuntos
Proteínas de Escherichia coli , Escherichia coli , Lactuca , Nutrientes , Escherichia coli/classificação , Escherichia coli/metabolismo , Escherichia coli O157/classificação , Escherichia coli O157/metabolismo , Lactuca/microbiologia , Fenótipo , SorogrupoRESUMO
High-event periods (HEPs) occur sporadically when beef carcasses and meat have episodes of acute contamination with Shiga toxin-producing Escherichia coli (STEC). In this study, severe weather events were investigated as catalysts for HEPs based on PCR and isolate prevalence of seven E. coli serogroups in slaughter cattle feces. Winter ambient temperatures with daily means 10.5oC warmer or 12.3°C colder than seasonal norms (-10.4°C) most altered STEC shedding. Fecal samples yielded increased proportions (P < 0.05) of O26 and O157 isolates during winter warm periods, and reduced (P < 0.05) O45 isolates during cold periods compared to samplings during seasonal norms. Based on changing PCR prevalence and isolates collected, O157 was the serogroup most responsive to severe weather events. Consequently, O157 isolates (n = 219) were evaluated for heat resistance, biofilm-forming potential and virulence gene subtypes. Two isolates had heat-resistant phenotypes with thermal death time at 60°C (D60) > 10 min and one also had strong biofilm-forming potential. However, this isolate lacked eae and stx genes. Severe weather can influence STEC shedding, particularly of O157, and could possibly trigger HEPs. However, our data suggest that it is unlikely for isolates to carry virulence genes and possess phenotypes capable of evading post-harvest microbiological interventions.
Assuntos
Biofilmes/crescimento & desenvolvimento , Escherichia coli O157/genética , Escherichia coli O157/patogenicidade , Fezes/microbiologia , Carne/microbiologia , Animais , Bovinos , Temperatura Baixa , Escherichia coli O157/isolamento & purificação , Proteínas de Escherichia coli/genética , Contaminação de Alimentos/análise , Temperatura Alta , Estações do Ano , Sorogrupo , Fatores de Virulência/genética , Tempo (Meteorologia)RESUMO
Disease outbreaks of verotoxin-producing Escherichia coli (VTEC) O157:H7 and non-O157 serotypes associated with leafy green vegetables are becoming a growing concern. A better understanding of the behavior of VTEC, particularly non-O157 serotypes, on lettuce under stress conditions is necessary for designing more effective control strategies. Hydrogen peroxide (H2O2) can be used as a sanitizer to reduce the microbial load in leafy green vegetables, particularly in fresh produce destined for the organic market. In this study, we tested the hypothesis that H2O2 treatment of contaminated lettuce affects in the same manner transcription of stress-associated and virulence genes in VTEC strains representing O157 and non-O157 serotypes. Six VTEC isolates representing serotypes O26:H11, O103:H2, O104:H4, O111:NM, O145:NM, and O157:H7 were included in this study. The results indicate that 50 mM H2O2 caused a population reduction of 2.4-2.8 log10 (compared to non-treated control samples) in all six VTEC strains present on romaine lettuce. Following the treatment, the transcription of genes related to oxidative stress (oxyR and sodA), general stress (uspA and rpoS), starvation (phoA), acid stress (gadA, gadB, and gadW), and virulence (stx1A, stx2A, and fliC) were dramatically downregulated in all six VTEC serotypes (P ≤ 0.05) compared to not treated control samples. Therefore, VTEC O157:H7 and non-O157 serotypes on lettuce showed similar survival rates and gene transcription profiles in response to 50 mM H2O2 treatment. Thus, the results derived from this study provide a basic understanding of the influence of H2O2 treatment on the survival and virulence of VTEC O157:H7 and non-O157 serotypes on lettuce.
RESUMO
A hydrophobic grid membrane filtration-Shiga toxin immunoblot method was used to examine the prevalence of Shiga toxin-producing Escherichia coli (STEC) in four watersheds located in the Lower Mainland of British Columbia, Canada, a region characterized by rapid urbanization and intensive agricultural activity. STEC were recovered from 21.6, 23.2, 19.5, and 9.2% of surface water samples collected monthly from five sites in each watershed over a period of 1 year. Overall prevalence was subject to seasonal variation however, ranging between 13.3% during fall months and 34.3% during winter months. STEC were also recovered from 23.8% of sediment samples collected in one randomly selected site. One hundred distinct STEC isolates distributed among 29 definitive and 4 ambiguous or indeterminate serotypes were recovered from water and sediments, including isolates from Canadian "priority" serogroups O157 (3), O26 (4), O103 (5), and O111 (7). Forty seven isolates were further characterized by analysis of whole genome sequences to detect Shiga toxin gene (stx 1 and stx 2), intimin gene (eaeA) allelic variants and acquired virulence factors. These analyses collectively showed that surface waters from the region support highly diverse STEC populations that include strains with virulence factors commonly associated with human pathotypes. The present work served to characterize the microbiological hazard implied by STEC to support future assessments of risks to public health arising from non-agricultural and agricultural uses of surface water resources in the region.
Assuntos
Adesinas Bacterianas/genética , Proteínas de Escherichia coli/genética , Sedimentos Geológicos/microbiologia , Toxina Shiga I/genética , Toxina Shiga II/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação , Agricultura , Técnicas de Tipagem Bacteriana , Sequência de Bases , Colúmbia Britânica , DNA Bacteriano/genética , Genoma Bacteriano/genética , Humanos , Reação em Cadeia da Polimerase , Estações do Ano , Análise de Sequência de DNA , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/patogenicidade , Microbiologia da ÁguaRESUMO
Understanding the survival mechanisms used by Shiga toxin-producing Escherichia coli (STEC), including O157:H7 and non-O157 serotypes, is important for minimizing contamination of fresh produce and occurrence of foodborne outbreaks. Recent outbreaks linked to leafy green vegetables and sprouted seeds have prompted researchers to focus on investigating decontamination strategies. Several studies showed that hydrogen peroxide (H2O2) treatment has been effective in reducing pathogens on fresh produce. As such, the effect of hydrogen peroxide on stress-associated and virulence gene expression in six STEC isolates was investigated in this study. Logarithmic phase cells of E. coli O157:H7 (EDL933) and non-O157 serotypes, including E. coli O26:H11 (EC20070549), O103:H2 (EC19970811), O104:H4 (NML#11-3088), O111:NM (EC20070546) and O145:NM (EC19970355) were exposed to 2.5mM H2O2 for 40 min and gene expression was evaluated using quantitative real-time PCR. Different patterns of gene expression were observed in E. coli O157:H7 and non-O157 serotypes. Particularly, Shiga toxin gene stx2 was upregulated in O157:H7, but not in O104:H4. Moreover, stx1 was significantly upregulated in STEC O157:H7, but only slightly upregulated Stx1-positive non-O157 serotypes. However genes related to motility (fliC) and intimin gene (eae) were downregulated in most strains. Stress-associated sodA gene encoding manganese superoxide dismutase was significantly upregulated in all serotypes. The dps gene coding for non-specific DNA binding protein was upregulated in O145:NM, O111:NM, O103:H2 and O26:H11. However genes related to cold shock (cspC) and acid resistance (gadW) were significantly downregulated in all strains tested. The results of this study provide a basic understanding of the oxidative stress impact on survival and virulence of non-O157 serotype STEC strains.
Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Estresse Oxidativo/genética , Escherichia coli Shiga Toxigênica/genética , Anti-Infecciosos/farmacologia , Proteínas de Escherichia coli/genética , Peróxido de Hidrogênio/farmacologia , Fatores de Virulência/genéticaRESUMO
Food service and retail sectors offer consumers a variety of mixed ingredient salads that contain fresh-cut vegetables and other ingredients such as fruits, nuts, cereals, dairy products, cooked seafood, cooked meat, cured meats, or dairy products obtained from external suppliers. Little is known about the behavior of enteric bacterial pathogens in mixed ingredient salads. A model system was developed to examine the fate of Salmonella enterica (inoculum consisting of S. enterica serovars Agona, Typhimurium, Enteritidis, Brandenberg, and Kentucky) on the surface of romaine lettuce tissues incubated alone and in direct contact with Cheddar cheese or cooked chicken. S. enterica survived but did not grow on lettuce tissues incubated alone or in contact with Cheddar cheese for 6 days at either 6 or 14°C. In contrast, populations increased from 2.01 ± 0.22 to 9.26 ± 0.22 CFU/cm(2) when lettuce washed in water was incubated in contact with cooked chicken at 14°C. Populations on lettuce leaves were reduced to 1.28 ± 0.14 CFU/cm(2) by washing with a chlorine solution (70 ppm of free chlorine) but increased to 8.45 ± 0.22 CFU/cm(2) after 6 days at 14°C. Experimentation with a commercial product in which one third of the fresh-cut romaine lettuce was replaced with inoculated lettuce revealed that S. enterica populations increased by 4 log CFU/g during storage for 3 days at 14°C. These findings indicate that rapid growth of bacterial enteric pathogens may occur in mixed ingredient salads; therefore, strict temperature control during the manufacture, distribution, handling, and storage of these products is critical.
Assuntos
Queijo/microbiologia , Galinhas , Lactuca/microbiologia , Carne/microbiologia , Salmonella enterica/crescimento & desenvolvimento , Animais , Cloro , Contagem de Colônia Microbiana , Culinária , Desinfetantes , Escherichia coli O157/crescimento & desenvolvimento , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Frutas , Humanos , Folhas de Planta/microbiologia , Temperatura , Verduras/microbiologiaRESUMO
The ability to predict the behavior of Escherichia coli O157:H7 on contaminated field lettuce is essential for the development of accurate quantitative microbial risk assessments. The survival pattern of the species was assessed from several data sets derived from field-based experiments, which were analyzed by regression analysis fitting one monophasic model (log-linear) and two biphasic (Weibull and Cerf's model) models. Probabilistic models were also simulated with @RISK™, integrating the fitted monophasic and biphasic models in order to analyze their impact on the estimate of the extent of die-off subsequent to a contamination event in the field. Regression analysis indicated that E. coli O157:H7 followed a biphasic decay pattern in most cases, with the Weibull and Cerf's model showing similar good fit to individual and pooled survival data. Furthermore, results from the stochastic analysis demonstrated that using the log-linear model could lead to different risk estimates from those obtained with biphasic models, with a lower prevalence in the former scenario as no tailing is assumed in this model. The models and results derived from this work provide the first suitable mathematical base upon which to build probabilistic models to predict the fate of E. coli O157:H7 on field-grown leafy green vegetable.
Assuntos
Escherichia coli O157/fisiologia , Microbiologia de Alimentos/métodos , Lactuca/microbiologia , Modelos Estatísticos , Contagem de Colônia Microbiana , Simulação por ComputadorRESUMO
A direct-fed microbial (DFM) containing Paenibacillus polymyxa, Lactobacillus casei, and Lactobacillus lactis was fed to cattle (n = 120) to determine impacts on shedding and survival of Escherichia coli O157:H7 in feces. Cattle were individually penned and fed diets containing 0 (control), 4 × 10(7) CFU (DFM-4), 8 × 10(7) CFU (DFM-8), or 1.2 × 10(8) CFU (DFM-12) lactobacilli per kg of dietary dry matter over 84-day fall-winter growing and 140-day spring-summer finishing periods. Fecal grab samples were collected from cattle at 28-day intervals, E. coli O157:H7 was detected by immunomagnetic separation, and isolates were compared by pulsed-field gel electrophoresis. During the growing period, feces negative for E. coli O157 from each dietary treatment were inoculated with 10(5) CFU/g nalidixic acid-resistant E. coli O157:H7 and were incubated at 4 and 22(u) C for 11 weeks. Fecal pH and fecal dry matter were measured on days 0, 1, 3, and 7 and weekly thereafter, with E. coli O157:H7 enumerated through dilution plating. Treatment with DFMs did not affect survival of E. coli O157:H7 in feces or fecal pH (P > 0.05). Only one steer was positive for E. coli O157:H7 during the growing period, but during the finishing period, DFM-8 and DFM-12 reduced the prevalence of E. coli O157:H7 in feces (P < 0.05). Feeding DFMs also reduced the frequency of individual steers shedding E. coli O157:H7 during finishing (P < 0.05), with control steers shedding E. coli O157:H7 up to four times, whereas DFM-12 steers shed E. coli O157:H7 a maximum of twice. Treatment with DFMs influenced pulsed-field gel electrophoresis profiles; steers that were fed DFM-8 and DFM-12 shed more diverse subtypes of E. coli O157:H7 than did control or DFM-4 steers. Because a companion study found linear improvement in performance with increasing dosage of DFMs in the first 28 days of the growing period, targeted use of DFM-12 during this time and for the final 1 or 2 weeks prior to slaughter may optimize performance and reduce E. coli O157:H7 while minimizing feed costs.
Assuntos
Doenças dos Bovinos/prevenção & controle , Infecções por Escherichia coli/veterinária , Escherichia coli O157/isolamento & purificação , Lacticaseibacillus casei/fisiologia , Lactobacillus/fisiologia , Paenibacillus/fisiologia , Probióticos/administração & dosagem , Ração Animal/análise , Ração Animal/microbiologia , Animais , Bovinos , Doenças dos Bovinos/microbiologia , Contagem de Colônia Microbiana , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Escherichia coli O157/classificação , Escherichia coli O157/fisiologia , Fezes/microbiologia , Feminino , MasculinoRESUMO
The objective of this study was to analyze the antibiotic resistance phenotype and genotype of Salmonella isolated from broiler production facilities. A total of 193 Salmonella isolates recovered from commercial farms in British Columbia, Canada, were evaluated. Susceptibility to antibiotics was determined with the Sensititre system. Virulence and antibiotic resistance genes were detected by PCR assay. Genetic diversity was determined by pulse-field gel electrophoresis (PFGE) typing. Seventeen serovars of Salmonella were identified. The most prevalent Salmonella serovars were Kentucky (29.0% of isolates), Typhimurium (23.8%), Enteritidis (13.5%), and Hadar (11.9%); serovars Heidelberg, Brandenburg, and Thompson were identified in 7.7, 4.1, and 3.6% of isolates, respectively. More than 43% of the isolates were simultaneously resistant to ampicillin, amoxicillin-clavulanic acid, ceftiofur, cefoxitim, and ceftriaxone. This ß-lactam resistance pattern was observed in 33 (58.9%) of the Salmonella Kentucky isolates; 2 of these isolates were also resistant to chloramphenicol, streptomycin, sulfisoxazole, and tetracycline. Genes associated with resistance to aminoglycosides (aadA1, aadA2, and strA), ß-lactams (blaCMY-2, blaSHV, and blaTEM), tetracycline (tetA and tetB), and sulfonamide (sul1) were detected among corresponding resistant isolates. The invasin gene (invA) and the Salmonella plasmid virulence gene (spvC) were found in 97.9 and 25.9% of the isolates, respectively, with 33 (71.7%) of the 46 Salmonella Typhimurium isolates and 17 (65.4%) of the 26 Salmonella Enteritidis isolates carrying both invA and spvC. PGFE typing revealed that the antibiotic-resistant serovars were genetically diverse. These data confirm that broiler chickens can be colonized by genetically diverse antibiotic-resistant Salmonella isolates harboring virulence determinants. The presence of such strains is highly relevant to food safety and public health.
Assuntos
Antibacterianos/farmacologia , Galinhas/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Salmonella enterica , Fatores de Virulência/genética , Animais , Colúmbia Britânica , Canadá , Eletroforese em Gel de Campo Pulsado , Microbiologia de Alimentos , Inocuidade dos Alimentos , Variação Genética , Genótipo , Plasmídeos/efeitos dos fármacos , Salmonella enterica/classificação , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/genéticaRESUMO
Wounding of lettuce tissue has been examined previously by others in regard to browning reactions, and treatments to modulate wounding responses were evaluated for reduction of browning. However, the wounding process also releases oxygen radicals such as hydrogen peroxide. This study focused on the evaluation of two treatments that reduce hydrogen peroxide at cut surfaces (heat treatment and pyruvate addition) and one treatment that enhances its production (infusion with the fungal elicitor harpin). Hydrogen peroxide changes in response to treatment were also associated with resultant survival of Escherichia coli O157:H7, which was inoculated onto the lettuce before cutting. Heat-treated lettuce produced significantly less hydrogen peroxide, and microbial analysis showed that E. coli O157:H7 survival on packaged, heat-treated lettuce was higher than on non-heat-treated controls. Lettuce was also cut under a solution of sodium pyruvate (a well-known hydrogen peroxide quencher), and E. coli O157:H7 survival was found to be enhanced with that treatment. When lettuce was infused with harpin before cutting, hydrogen peroxide production was enhanced, and this was associated with reduced survival of E. coli O157:H7. These results collectively support the hypothesis that modulation of wound-generated hydrogen peroxide can have an influence on E. coli O157:H7 survival on cut and packaged romaine lettuce.
Assuntos
Escherichia coli/efeitos dos fármacos , Manipulação de Alimentos/métodos , Peróxido de Hidrogênio/metabolismo , Lactuca/microbiologia , Contagem de Colônia Microbiana , Escherichia coli/crescimento & desenvolvimento , Temperatura Alta , Humanos , Viabilidade Microbiana , Ácido Pirúvico/farmacologiaRESUMO
BACKGROUND: One of the most effective targets for control of zoonotic foodborne pathogens in the farm to fork continuum is their elimination in food animals destined for market. Phage therapy for Escherichia coli O157:H7 in ruminants, the main animal reservoir of this pathogen, is a popular research topic. Since phages active against this pathogen may be endemic in host animals and their environment, they may emerge during trials of phage therapy or other interventions, rendering interpretation of trials problematic. METHODS: During separate phage therapy trials, sheep and cattle inoculated with 109 to 1010 CFU of E. coli O157:H7 soon began shedding phages dissimilar in plaque morphology to the administered therapeutic phages. None of the former was previously identified in the animals or in their environment. The dissimilar "rogue" phage was isolated and characterized by host range, ultrastructure, and genomic and proteomic analyses. RESULTS: The "rogue" phage (Phage vB_EcoS_Rogue1) is distinctly different from the administered therapeutic Myoviridae phages, being a member of the Siphoviridae (head: 53 nm; striated tail: 152x8 nm). It has a 45.8 kb genome which is most closely related to coliphage JK06, a member of the "T1-like viruses" isolated in Israel. Detailed bioinformatic analysis reveals that the tail of these phages is related to the tail genes of coliphage lambda. The presence of "rogue" phages resulting from natural enrichments can pose problems in the interpretation of phage therapeutic studies. Similarly, evaluation of any interventions for foodborne or other bacterial pathogens in animals may be compromised unless tests for such phages are included to identify their presence and potential impact.
Assuntos
Terapia Biológica/métodos , Doenças dos Bovinos/terapia , Colífagos/isolamento & purificação , Infecções por Escherichia coli/veterinária , Escherichia coli O157/virologia , Doenças dos Ovinos/terapia , Animais , Capsídeo/ultraestrutura , Bovinos , Colífagos/classificação , Colífagos/genética , Colífagos/ultraestrutura , Infecções por Escherichia coli/terapia , Genoma Viral , Microscopia Eletrônica , Dados de Sequência Molecular , Análise de Sequência de DNA , Ovinos , Siphoviridae/ultraestrutura , Proteínas Virais/análiseRESUMO
The thermal tolerance Cronobacter sakazakii was examined in sterile powdered infant formula (PIF) rehydrated at 58 °C in water or apple juice supplemented with vanillin, ethyl vanillin, or vanillic acid. All three compounds decreased thermal tolerance during-rehydration and the lowest decimal reduction time (D-value, 0.19 ± 0.01 min) was measured in PIF rehydrated in apple juice supplemented with 20 mM vanillic acid. At this level of supplementation no C. sakazakii were detected in PIF stored for 48 h at 10 and 24 h at 21 °C subsequent to a sublethal heat treatment. Thermal tolerance during rehydration and survival in reconstituted PIF were influenced by compound type, concentration, and temperature. Supplementation of PIF with vanillin, ethyl vanillin, or vanillic acid could enhance the safety of PIF or other dehydrated foods contaminated with C. sakazakii.
Assuntos
Benzaldeídos/química , Cronobacter sakazakii/isolamento & purificação , Fórmulas Infantis/química , Ácido Vanílico/química , Bebidas , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Cronobacter sakazakii/crescimento & desenvolvimento , Suplementos Nutricionais , Contaminação de Alimentos/análise , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Humanos , Lactente , Malus/química , TemperaturaRESUMO
Little is known about the influence of abiotic factors such as climate and soil chemistry on the survival of Escherichia coli O157:H7 in field lettuce. We applied a nalidixic acid-resistant derivative of strain ATCC 700728 to field-grown romaine lettuce in two regions in Canada characterized by large variances in soil type and climate. Surviving populations in soil and on lettuce leaves were estimated on sorbitol MacConkey agar supplemented with nalidixic acid. Data were fitted with the Weibull decline function to permit comparison of decay rates in the two experimental sites. E. coli O157:H7 populations fell from 105 to <10² CFU/g on leaves, and <10³ CFU/g in soil within 7 days after inoculation. Analysis revealed there was no significant difference between decay rates at the two experimental sites in either environment. The results of this study suggest that the inherent ecological fitness of E. coli O157:H7 ATCC 700728 determines the extent of survival in the production environment.
Assuntos
Escherichia coli O157/crescimento & desenvolvimento , Contaminação de Alimentos/análise , Lactuca/microbiologia , Viabilidade Microbiana , Microbiologia do Solo , Clima , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Microbiologia de Alimentos , Humanos , CinéticaRESUMO
Preservatives could be part of an effective intervention strategy for the control of Cronobacter species in foods, but few compounds with the desired antimicrobial properties have been identified to date. We examined the antibacterial activity of vanillin, ethyl vanillin, and vanillic acid against seven Cronobacter spp. in quarter-strength tryptic soy broth with 5 g/liter yeast extract (TSBYE) adjusted to pH 5.0, 6.0, and 7.0 at 10, 21, and 37°C. All compounds exhibited pH- and temperature-dependant bacteriostatic and bactericidal activity. MICs of vanillin and ethyl vanillin consistently increased with decreasing pH and temperature, but vanillic acid had little activity at pH values of 6.0 and 7.0. The MICs for all temperatures, pH values, and bacterial strains tested were 2 mg/ml ethyl vanillin, 3 mg/ml vanillin, and >8 mg/ml vanillic acid. MBCs also were influenced by pH, although significantly higher concentrations were needed to inactivate the bacteria at 21°C than at 10 or 37°C. Survivor curves for Cronobacter sakazakii strains at the MBCs of each compound revealed that all treatments resulted in immediate loss of cell viability at 37°C. Measurements of propidium iodide uptake indicated that the cell membranes were damaged by exposure to all three compounds. The thermal resistance of C. sakazakii was examined at 58°C in TSBYE supplemented with MBCs of each compound at pH 5.0 and 6.0. D-values at pH 5.0 were reduced from 14.56 ± 0.60 min to 0.93 ± 0.01, 0.63 ± 0.01, and 0.98 ± 0.02 min for vanillin, ethyl vanillin, and vanillic acid, respectively. These results suggest that vanillin, ethyl vanillin, and vanillic acid may be useful for the control of Cronobacter spp. in food during preparation and storage.