Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
bioRxiv ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38585891

RESUMO

Altered neuronal excitability and synaptic inputs to motoneurons are part of the pathophysiology of Amyotrophic Lateral Sclerosis. The cAMP/PKA pathway regulates both of them but therapeutic interventions at this level are limited by the lack of knowledge about suitable pharmacological entry points. Here we used transcriptomics on microdissected and in situ motoneurons to reveal the modulation of PKA-coupled receptorome in SOD1(G93A) ALS mice, vs WT, demonstrating the dysregulation of multiple PKA-coupled GPCRs, in particular on vulnerable MNs, and the relative sparing of ß-adrenergic receptors. In vivo MN electrophysiology showed that ß2/ß3 agonists acutely increase excitability, in particular the input/output relationship, demonstrating a non-canonical adrenergic neuromodulation mediated by ß2/ß3 receptors both in WT and SOD1 mice. The excitability increase corresponds to the upregulation of immediate-early gene expression and dysregulation of ion channels transcriptome. However the ß2/ß3 neuromodulation is submitted to a strong homeostasis, since a ten days delivery of ß2/ß3 agonists results in an abolition of the excitability increase. The homeostatic response is largely caused by a substantial downregulation of PKA-coupled GPCRs in MNs from WT and SOD1 mice. Thus, ß-adrenergic receptors are physiologically involved in the regulation of MN excitability and transcriptomics, but, intriguingly, a strong homeostatic response is triggered upon chronic pharmacologic intervention.

2.
bioRxiv ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38645210

RESUMO

In neurological conditions affecting the brain, early-stage neural circuit adaption is key for long-term preservation of normal behaviour. We tested if motoneurons and respective microcircuits also adapt in the initial stages of disease progression in a mouse model of progressive motoneuron degeneration. Using a combination of in vitro and in vivo electrophysiology and super-resolution microscopy, we found that, preceding muscle denervation and motoneuron death, recurrent inhibition mediated by Renshaw cells is reduced in half due to impaired quantal size associated with decreased glycine receptor density. Additionally, higher probability of release from proprioceptive Ia terminals leads to increased monosynaptic excitation to motoneurons. Surprisingly, the initial impairment in recurrent inhibition is not a widespread feature of inhibitory spinal circuits, such as group I inhibitory afferents, and is compensated at later stages of disease progression. We reveal that in disease conditions, spinal microcircuits undergo specific multiphasic homeostatic compensations to preserve force output.

3.
Clin Neurophysiol ; 158: 114-136, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38218077

RESUMO

Non-invasive brain stimulation techniques have been exploited in motor neuron disease (MND) with multifold objectives: to support the diagnosis, to get insights in the pathophysiology of these disorders and, more recently, to slow down disease progression. In this review, we consider how neuromodulation can now be employed to treat MND, with specific attention to amyotrophic lateral sclerosis (ALS), the most common form with upper motoneuron (UMN) involvement, taking into account electrophysiological abnormalities revealed by human and animal studies that can be targeted by neuromodulation techniques. This review article encompasses repetitive transcranial magnetic stimulation methods (including low-frequency, high-frequency, and pattern stimulation paradigms), transcranial direct current stimulation as well as experimental findings with the newer approach of trans-spinal direct current stimulation. We also survey and discuss the trials that have been performed, and future perspectives.


Assuntos
Esclerose Lateral Amiotrófica , Doença dos Neurônios Motores , Estimulação Transcraniana por Corrente Contínua , Animais , Humanos , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/terapia , Doença dos Neurônios Motores/diagnóstico , Doença dos Neurônios Motores/terapia , Neurônios Motores/fisiologia , Encéfalo , Estimulação Magnética Transcraniana/métodos
4.
Eur J Neurosci ; 58(2): 2504-2514, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37278127

RESUMO

Male and female rats differ in muscle fibre composition, related motor unit contractile properties, and muscle spindle density but not number. On the other hand, their motoneurons' intrinsic properties, excitability and firing properties are similar. The aim of this study was to investigate whether apparent sex differences in body mass and muscle force influence the proprioceptive input from muscle spindles to motoneurons. Medial gastrocnemius motoneurons were investigated intracellularly in deeply anaesthetised male and female rats. Monosynaptic Ia excitatory postsynaptic potentials (EPSPs) were evoked using electrical stimulation of primary afferents from homonymous muscle. Data were analysed using a mixed linear model. The central latencies of EPSPs were 0.38-0.80 ms, with no differences in means between males and females. The maximum EPSP amplitude varied between 2.03 and 8.09 mV in males and 1.24 and 6.79 mV in females. The mean maximum EPSP amplitude was 26% higher in males than in females. The mean EPSP rise time, half-decay time and total duration did not differ between the sexes. EPSP amplitudes correlated with the resting membrane potential, input resistance and EPSP rise time in both sexes. The observed sex differences in the Ia proprioceptive input may be related either to mechanical loading differences in males and females associated with their different body mass or hormonal differences influencing the levels of neuromodulation in spinal circuits. The results highlight the importance of taking sex into consideration in the studies on the influence of afferent inputs on MN excitability.


Assuntos
Potenciais Evocados , Medula Espinal , Feminino , Masculino , Animais , Ratos , Medula Espinal/fisiologia , Neurônios Motores/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético , Sinapses/fisiologia
5.
Sci Rep ; 13(1): 4571, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941445

RESUMO

The purpose of this study was to determine whether altered serum and/or muscle concentrations of brain-derived neurotrophic factor (BDNF) can modify the electrophysiological properties of spinal motoneurons (MNs). This study was conducted in wild-type and Bdnf heterozygous knockout rats (HET, SD-BDNF). Rats were divided into four groups: control, knockout, control trained, and knockout trained. The latter two groups underwent moderate-intensity endurance training to increase BDNF levels in serum and/or hindlimb muscles. BDNF and other neurotrophic factors (NFs), including glial cell-derived neurotrophic factor (GDNF), neurotrophin-3 (NT-3), nerve growth factor (NGF), and neurotrophin-4 (NT-4) were assessed in serum and three hindlimb muscles: the tibialis anterior (TA), medial gastrocnemius (MG), and soleus (Sol). The concentrations of tropomyosin kinase receptor B (Trk-B), interleukin-15 (IL-15), and myoglobin (MYO/MB) were also evaluated in these muscles. The electrophysiological properties of lumbar MNs were studied in vivo using whole-cell current-clamp recordings. Bdnf knockout rats had reduced levels of all studied NFs in serum but not in hindlimb muscles. Interestingly, decreased serum NF levels did not influence the electrophysiological properties of spinal MNs. Additionally, endurance training did not change the serum concentrations of any of the NFs tested but significantly increased BDNF and GDNF levels in the TA and MG muscles in both trained groups. Furthermore, the excitability of fast MNs was reduced in both groups of trained rats. Thus, changes in muscle (but not serum) concentrations of BDNF and GDNF may be critical factors that modify the excitability of spinal MNs after intense physical activity.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Ratos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Neurotrofina 3/metabolismo , Neurônios Motores/metabolismo , Músculo Esquelético/metabolismo
6.
Adv Neurobiol ; 28: 131-150, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36066824

RESUMO

Although they share the common function of controlling muscle fiber contraction, spinal motoneurons display a remarkable diversity. Alpha-motoneurons are the "final common pathway", which relay all the information from spinal and supraspinal centers and allow the organism to interact with the outside world by controlling the contraction of muscle fibers in the muscles. On the other hand, gamma-motoneurons are specialized motoneurons that do not generate force and instead specifically innervate muscle fibers inside muscle spindles, which are proprioceptive organs embedded in the muscles. Beta-motoneurons are hybrid motoneurons that innervate both extrafusal and intrafusal muscle fibers. Even among alpha-motoneurons, there exists an exquisite diversity in terms of motoneuron electrical and molecular properties, physiological and structural properties of their neuromuscular junctions, and molecular and contractile properties of the innervated muscle fibers. This diversity, across species, across muscles, and across muscle fibers in a given muscle, underlie the vast repertoire of movements that one individual can perform.


Assuntos
Neurônios Motores , Contração Muscular , Animais , Humanos , Mamíferos , Músculos
7.
Adv Neurobiol ; 28: 375-394, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36066833

RESUMO

Spinal alpha-motoneurons are classified in several types depending on the contractile properties of the innervated muscle fibers. This diversity is further displayed in different levels of vulnerability of distinct motor units to neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS). We summarize recent data suggesting that, contrary to the excitotoxicity hypothesis, the most vulnerable motor units are hypoexcitable and experience a reduction in their firing prior to symptoms onset in ALS. We suggest that a dysregulation of activity-dependent transcriptional programs in these motoneurons alter crucial cellular functions such as mitochondrial biogenesis, autophagy, axonal sprouting capability and re-innervation of neuromuscular junctions.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Neurônios Motores , Contração Muscular
8.
Neuroscience ; 498: 125-143, 2022 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-35792195

RESUMO

In presymptomatic amyotrophic lateral sclerosis (ALS), spinal motoneurons (MNs) have reduced firing patterns and synaptic excitation levels. Preliminary data indicated that in the SOD1 G93A mouse model of ALS, monosynaptic excitatory postsynaptic potentials (EPSPs) evoked in spinal MN by Ia proprioceptive afferent stimulation could be facilitated by trans-spinal direct current stimulation (tsDCS). However, which element of the Ia afferent-MN circuit is affected by tsDCS, and whether tsDCS-induced EPSP facilitation is a general phenomenon or specific to the superoxide dismutase type-1 (SOD1) Glycine to Alanine substitution at position 93 (G93A) mutation, remain to be determined. In this study, we have applied 15-minute tsDCS to the lumbar segments of presymptomatic SOD1 and wildtype (WT) mice and explored its impact on MN passive membrane properties, EPSP amplitude, and Ia afferent activity. While anodal tsDCS induced short-lasting EPSP facilitation in both SOD1 and WT mice, Ia afferent activity and passive membrane properties were altered only in SOD1 mice. Interestingly, EPSP amplitudes of SOD1 mice remained facilitated for at least 1 h after current application, but no long-lasting effect was observed in WT mice. Moreover, anodal tsDCS failed to induce any long-lasting changes in MN passive membrane properties in both SOD1 and WT mice. Conversely, cathodal tsDCS decreased Ia afferent induced EPSP amplitudes only during current application in SOD1 MNs, and no significant effects on Ia afferents excitability were observed. Our findings indicate the high susceptibility of SOD1 MNs to tsDCS and highlight the potential of this neuromodulation technique for the treatment of ALS.


Assuntos
Terapia por Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores , Alanina , Esclerose Lateral Amiotrófica , Animais , Terapia por Estimulação Elétrica/métodos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Glicina , Camundongos , Neurônios Motores/fisiologia , Medula Espinal , Superóxido Dismutase , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
9.
Eur J Neurosci ; 56(3): 4176-4186, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35727198

RESUMO

Several studies have reported differences in the morphological characteristics of motoneurons and the contractile properties of motor units of male and female rats. However, differences in spinal motoneuron activity between the sexes are not well understood. This study investigates the electrophysiological properties of spinal α-motoneurons in male and female Wistar rats under pentobarbital anaesthesia. Fast and slow types of tibial motoneurons were recorded intracellularly in 15 male and 15 female rats, and the measured parameters were compared statistically using two-way ANOVA and Tukey post hoc tests. The membrane properties, action potential parameters and firing characteristics were not different between sexes, though significant differences were observed in the properties of fast and slow motoneuron types within both sex groups. We conclude that the sex-related differences observed in motor performance between male and female rats are largely due to differences in muscle mass, the proportion of muscle fibre types and the related motor unit contractile properties, while the mechanisms of motor control dependent on the electrophysiological activity of motoneurons are similar between the sexes. These findings are significant, as they indicate that results of experiments investigating electrophysiological properties can be reliably compared between sexes.


Assuntos
Neurônios Motores , Contração Muscular , Potenciais de Ação , Animais , Feminino , Membro Posterior , Masculino , Neurônios Motores/fisiologia , Contração Muscular/fisiologia , Ratos , Ratos Wistar , Medula Espinal/fisiologia
10.
J Appl Physiol (1985) ; 132(1): 178-186, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34855524

RESUMO

Whole body vibration (WBV) is often applied as an alternative method for strength training or to prevent muscle force decrease. In this study, we evaluated the influence of WBV on Ia monosynaptic input from muscle spindles because the tonic vibration reflex is responsible for the enhancement of muscle activity observed after WBV. The aim was to investigate whether repeated activation of muscle spindles during WBV may result in altered synaptic excitation of motoneurons. WBV was performed on adult male Wistar rats, 5 days/wk, for 5 wk, and each daily session consisted of four 30-s runs of vibration at 50 Hz. Fast-type medial gastrocnemius motoneurons were investigated intracellularly in deeply anesthetized animals in the experimental (n = 7, 34 motoneurons) and control (n = 7, 32 motoneurons) groups. Monosynaptic Ia excitatory postsynaptic potentials (EPSPs) were evoked by electrical stimulation of afferent fibers from the synergistic lateral gastrocnemius and soleus muscles. Data were analyzed using a mixed linear model. The central latencies of EPSPs were 0.45-0.9 ms with no differences in the mean values between the analyzed groups (P = 0.291). WBV induced an increase of the mean EPSP amplitude by 28% (P = 0.025), correlated with the resting membrane potential and input resistance, and a shortening of the mean EPSP rise time by 11% (P = 0.012). The potentiation of synaptic excitation of motoneurons was not accompanied by changes of passive membrane properties, pointing to synaptic plasticity. This indicates that WBV may support rehabilitation or training processes aimed at increasing muscle strength on the basis of increased motoneuronal drive.NEW & NOTEWORTHY The study provides new information on neuronal plasticity following repeatedly exerted mechanical loading. We demonstrate in electrophysiological experiments on rat lumbar motoneurons that low-volume whole body vibration applied systematically for 5 wk potentiates synaptic excitation from primary muscle afferents. The adaptive changes are expressed by higher amplitudes and shorter rise times of monosynaptic EPSPs evoked in motoneurons of the vibrated group compared with the control.


Assuntos
Medula Espinal , Vibração , Animais , Potenciais Pós-Sinápticos Excitadores , Masculino , Neurônios Motores , Músculo Esquelético , Ratos , Ratos Wistar , Sinapses
11.
J Appl Physiol (1985) ; 130(3): 677, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33706589
12.
Physiol Rep ; 9(2): e14706, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33463907

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of largely unknown pathophysiology, characterized by the progressive loss of motoneurons (MNs). We review data showing that in presymptomatic ALS mice, MNs display reduced intrinsic excitability and impaired level of excitatory inputs. The loss of repetitive firing specifically affects the large MNs innervating fast contracting muscle fibers, which are the most vulnerable MNs in ALS. Interventions that aimed at restoring either the intrinsic excitability or the synaptic excitation result in a decrease of disease markers in MNs and delayed neuromuscular junction denervation. We then focus on trans-spinal direct current stimulation (tsDCS), a noninvasive tool, since it modulates the activity of spinal neurons and networks. Effects of tsDCS depend on the polarity of applied current. Recent work shows that anodal tsDCS induces long-lasting enhancement of MN excitability and synaptic excitation of spinal MNs. Moreover, we show preliminary results indicating that anodal tsDCS enhances the excitatory synaptic inputs to MNs in ALS mice. In conclusion, we suggest that chronic application of anodal tsDCS might be useful as a complementary method in the management of ALS patients.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Terapia por Estimulação Elétrica/métodos , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Humanos , Neurônios Motores/fisiologia , Medula Espinal/fisiologia
13.
J Appl Physiol (1985) ; 129(4): 646-655, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32790599

RESUMO

Recently, it has been shown that spinal cord polarization considerably modulates motoneuron activity, with certain observed changes in motoneuron membrane and firing properties outlasting the duration of polarization. The purpose of this study was to determine whether repeated sessions of transcutaneous transspinal direct current stimulation (tsDCS) induce adaptive changes in motoneuron properties. In this study, adult male Wistar rats under isoflurane anesthesia were subjected to anodal (n = 6) or cathodal (n = 6) tsDCS (100 µA, 15 min) 5 days per week for 5 wk. Sham control group rats (n = 6) served as a reference. Intracellular recordings from lumbar spinal motoneurons were performed under pentobarbital anesthesia 1 day after the final tsDCS session to analyze membrane and firing properties. Anodal polarization appeared to be effective in evoking significant adaptive changes toward the facilitation of motoneuron firing. When compared with the sham polarization group, these adaptations were expressed by the increased input resistance (P = 0.0077), decreased voltage threshold for spike generation (P = 0.0248) and doublet threshold (P = 0.0311), and increased maximum steady-state firing (SSF) frequency (P = 0.0073), SSF frequency range (P = 0.0075) and slope of the frequency-current relationship (P = 0.0111). However, the effects of cathodal polarization were modest and generally not significant in regard to the sham control. These novel findings support the existing knowledge on alterations in spinal neuronal network excitability in response to polarization and provide the direct evidence of adaptive neuroplasticity of spinal motoneurons in response to chronically applied tsDCS.NEW & NOTEWORTHY Transcutaneous spinal direct current stimulation applied systematically for 5 wk evoked polarity-dependent adaptations in the electrophysiological properties of rat spinal motoneurons. After anodal polarization sessions, motoneurons became more excitable and could evoke higher maximum discharge frequencies during repetitive firing than motoneurons in the sham polarization group. However, no significant adaptive changes of motoneuron properties were observed after repeated cathodal polarization in comparison with the sham control group.


Assuntos
Estimulação Elétrica Nervosa Transcutânea , Adaptação Fisiológica , Animais , Masculino , Neurônios Motores , Ratos , Ratos Wistar , Medula Espinal
14.
J Exp Med ; 217(8)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32484501

RESUMO

Excessive excitation is hypothesized to cause motoneuron (MN) degeneration in amyotrophic lateral sclerosis (ALS), but actual proof of hyperexcitation in vivo is missing, and trials based on this concept have failed. We demonstrate, by in vivo single-MN electrophysiology, that, contrary to expectations, excitatory responses evoked by sensory and brainstem inputs are reduced in MNs of presymptomatic mutSOD1 mice. This impairment correlates with disrupted postsynaptic clustering of Homer1b, Shank, and AMPAR subunits. Synaptic restoration can be achieved by activation of the cAMP/PKA pathway, by either intracellular injection of cAMP or DREADD-Gs stimulation. Furthermore, we reveal, through independent control of signaling and excitability allowed by multiplexed DREADD/PSAM chemogenetics, that PKA-induced restoration of synapses triggers an excitation-dependent decrease in misfolded SOD1 burden and autophagy overload. In turn, increased MN excitability contributes to restoring synaptic structures. Thus, the decrease of excitation to MN is an early but reversible event in ALS. Failure of the postsynaptic site, rather than hyperexcitation, drives disease pathobiochemistry.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Neurônios Motores/enzimologia , Neuroproteção , Transdução de Sinais , Sinapses/enzimologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Proteínas Quinases Dependentes de AMP Cíclico/genética , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Sinapses/genética , Sinapses/patologia
15.
J Vis Exp ; (159)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32449709

RESUMO

Intracellular recording of spinal motoneurons in vivo provides a "gold standard" for determining the cells' electrophysiological characteristics in the intact spinal network and holds significant advantages relative to classical in vitro or extracellular recording techniques. An advantage of in vivo intracellular recordings is that this method can be performed on adult animals with a fully mature nervous system, and therefore many observed physiological mechanisms can be translated to practical applications. In this methodological paper, we describe this procedure combined with externally applied constant current stimulation, which mimics polarization processes occurring within spinal neuronal networks. Trans-spinal direct current stimulation (tsDCS) is an innovative method increasingly used as a neuromodulatory intervention in rehabilitation after various neurological injuries as well as in sports. The influence of tsDCS on the nervous system remains poorly understood and the physiological mechanisms behind its actions are largely unknown. The application of the tsDCS simultaneously with intracellular recordings enables us to directly observe changes of motoneuron membrane properties and characteristics of rhythmic firing in response to the polarization of the spinal neuronal network, which is crucial for the understanding of tsDCS actions. Moreover, when the presented protocol includes the identification of the motoneuron with respect to an innervated muscle and its function (flexor versus extensor) as well as the physiological type (fast versus slow) it provides an opportunity to selectively investigate the influence of tsDCS on identified components of spinal circuitry, which seem to be differently affected by polarization. The presented procedure focuses on surgical preparation for intracellular recordings and stimulation with an emphasis on the steps which are necessary to achieve preparation stability and reproducibility of results. The details of the methodology of the anodal or cathodal tsDCS application are discussed while paying attention to practical and safety issues.


Assuntos
Terapia por Estimulação Elétrica , Espaço Intracelular/fisiologia , Neurônios Motores/citologia , Medula Espinal/citologia , Potenciais de Ação/fisiologia , Animais , Eletrodos , Masculino , Ratos Wistar , Reprodutibilidade dos Testes
16.
Eur J Neurosci ; 51(8): 1743-1755, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31677210

RESUMO

Trans-spinal direct current stimulation (tsDCS) is a novel neuromodulatory technique that has been used during neurological rehabilitation and sports to modulate muscle activation. However, the physiological mechanisms that underly the long-lasting functional effects of polarization are not yet fully understood, nor are their relationships with specific neuronal populations. The acute facilitatory and depressive effects of anodal and cathodal polarization on motoneurons have been recently demonstrated, and the aim of this study was to determine whether tsDCS-evoked modulations of motoneuron properties are able to persist over several hours. Intracellular recordings from multiple antidromically identified rat motoneurons were performed both before and after the application of tsDCS (0.1 mA for 15 min), at various time points up to 180 min after the offset of anodal or cathodal tsDCS. The examined effects of anodal polarization included decreased rheobase, voltage threshold, the minimum and maximum currents necessary for rhythmic firing, increased rhythmic firing frequencies and the slope of the f-I relationship. The majority of these facilitatory changes to threshold and firing properties were sustained for 30-60 min after polarization. In contrast, the significant effects of cathodal polarization were absent, except the short-lasting decreased ability for motoneurons to induce rhythmic activity. This study provides direct evidence that a single polarization session can alter the electrophysiological properties of motoneurons for at least one hour and provides a basis for the further use of tsDCS techniques under conditions where the sustained modification of motoneuron firing is desired.


Assuntos
Eletricidade , Neurônios Motores , Animais , Eletrodos , Ratos , Medula Espinal
17.
J Appl Physiol (1985) ; 123(3): 664-673, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28596267

RESUMO

Resistance training, with repeated short-term and high-intensity exercises, is responsible for an increase in muscle mass and force. The aim of this study was to determine whether such training induces adaptations in the electrophysiological properties of motoneurons innervating the trained muscles and to relate these adaptive changes to previous observations made on motor unit contractile properties. The study was performed on adult male Wistar rats. Animals from the training group were subjected to a 5-wk voluntary progressive weight-lifting program, whereas control rats were restricted to standard cage activity. Intracellular recordings from lumbar spinal motoneurons were made under pentobarbital anesthesia. Membrane properties were measured, and rhythmic firing of motoneurons was analyzed. Strength training evoked adaptive changes in both slow- and fast-type motoneurons, indicating their increased excitability. A shorter spike duration, a higher input resistance, a lower rheobase, a decrease in the minimum current required to evoke rhythmic firing, an increase in the maximum frequencies of the early-state firing (ESF) and the steady-state firing (SSF), and an increase in the respective slopes of the frequency-current (f/I) relationship were observed in fast motoneurons of the trained group. The increase in the maximum ESF and SSF frequencies and an increase in the SSF f/I slope were also present in slow motoneurons. Higher maximum firing rates of motoneurons as well as higher discharge frequencies evoked at the same level of intracellular depolarization current imply higher levels of tetanic forces developed by motor units over the operating range of force production after strength training.NEW & NOTEWORTHY Neuronal responses to weight-lifting training can be observed in altered properties of both slow and fast motoneurons. Motoneurons of trained animals are more excitable, require lower intracellular currents to evoke rhythmic firing, and have the ability to evoke higher maximum discharge frequencies during repetitive firing.


Assuntos
Adaptação Fisiológica/fisiologia , Neurônios Motores/fisiologia , Levantamento de Peso/fisiologia , Potenciais de Ação/fisiologia , Animais , Remoção , Masculino , Ratos , Ratos Wistar
18.
Eur J Neurosci ; 40(4): 2628-40, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24835584

RESUMO

Ipsilateral actions of pyramidal tract (PT) neurons are weak but may, if strengthened, compensate for deficient crossed PT actions following brain damage. The purpose of the present study was to examine whether transcranial direct current stimulation (tDCS) can strengthen ipsilateral PT (iPT) actions; in particular, those relayed by reticulospinal neurons co-excited by axon collaterals of fibres descending in the iPT and contralateral PT (coPT) and of reticulospinal neurons descending in the medial longitudinal fascicle (MLF). The effects of tDCS were assessed in acute experiments on deeply anaesthetized cats by comparing postsynaptic potentials evoked in hindlimb motoneurons and discharges recorded from their axons in a ventral root, before, during and after tDCS. tDCS was consistently found to facilitate joint actions of the iPT and coPT, especially when they were stimulated together with the MLF. Both excitatory postsynaptic potentials and inhibitory postsynaptic potentials evoked in motoneurons and the ensuing ventral root discharges were facilitated, even though the facilitatory effects of tDCS were not sufficient for activation of motoneurons by iPT neurons alone. Facilitation outlasted single tDCS periods by at least a few minutes, and the effects evoked by repeated tDCS by up to 2 h. The results of this study thus indicate that tDCS may increase the contribution of iPT actions to the recovery of motor functions after injuries to coPT neurons, and thereby assist rehabilitation, provided that corticoreticular and reticulospinal connections are preserved.


Assuntos
Neurônios Motores/fisiologia , Tratos Piramidais/fisiologia , Raízes Nervosas Espinhais/fisiologia , Estimulação Transcraniana por Corrente Contínua , Animais , Gatos , Bulbo/fisiologia , Potenciais Sinápticos
19.
Appl Physiol Nutr Metab ; 38(9): 913-21, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23905655

RESUMO

The purpose of the study was to determine the effects of 5-week whole-body vibration (WBV) on contractile parameters and force-frequency relationship of functionally isolated motor units of the rat medial gastrocnemius muscle: fast fatigable (FF), fast fatigue-resistant (FR), and slow (S). Moreover, myosin heavy chain isoform content was quantified. Following WBV, the maximum tetanic force of FF units was increased by ∼25%. The twitch half-relaxation time in all types of motor units and the twitch contraction time in FR units were shortened. The twitch-to-tetanus force ratio was decreased and the force-frequency curves were shifted rightwards in S and FR units. Myosin heavy chain distribution was not changed. These findings suggest modifications of the excitation-contraction coupling towards shortening of a twitch contraction. The observed increase in force of FF units may contribute to gains in muscle dynamic strength reported following WBV treatment.


Assuntos
Contração Muscular , Vibração , Animais , Neurônios Motores , Músculo Esquelético , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA