Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Invest ; 132(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36317634

RESUMO

BackgroundNeuroendocrine prostate cancer (NEPC) is an aggressive subtype, the presence of which changes the prognosis and management of metastatic prostate cancer.MethodsWe performed analytical validation of a Circulating Tumor Cell (CTC) multiplex RNA qPCR assay to identify the limit of quantification (LOQ) in cell lines, synthetic cDNA, and patient samples. We next profiled 116 longitudinal samples from a prospectively collected institutional cohort of 17 patients with metastatic prostate cancer (7 NEPC, 10 adenocarcinoma) as well as 265 samples from 139 patients enrolled in 3 adenocarcinoma phase II trials of androgen receptor signaling inhibitors (ARSIs). We assessed a NEPC liquid biomarker via the presence of neuroendocrine markers and the absence of androgen receptor (AR) target genes.ResultsUsing the analytical validation LOQ, liquid biomarker NEPC detection in the longitudinal cohort had a per-sample sensitivity of 51.35% and a specificity of 91.14%. However, when we incorporated the serial information from multiple liquid biopsies per patient, a unique aspect of this study, the per-patient predictions were 100% accurate, with a receiver-operating-curve (ROC) AUC of 1. In the adenocarcinoma ARSI trials, the presence of neuroendocrine markers, even while AR target gene expression was retained, was a strong negative prognostic factor.ConclusionOur analytically validated CTC biomarker can detect NEPC with high diagnostic accuracy when leveraging serial samples that are only feasible using liquid biopsies. Patients with expression of NE genes while retaining AR-target gene expression may indicate the transition to neuroendocrine differentiation, with clinical characteristics consistent with this phenotype.FundingNIH (DP2 OD030734, 1UH2CA260389, R01CA247479, and P30 CA014520), Department of Defense (PC190039 and PC200334), and Prostate Cancer Foundation (Movember Foundation - PCF Challenge Award).


Assuntos
Adenocarcinoma , Neoplasias da Próstata , Humanos , Masculino , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Biomarcadores , Transdução de Sinais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
2.
J Clin Oncol ; 40(31): 3633-3641, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35617646

RESUMO

PURPOSE: Liquid biopsies in metastatic renal cell carcinoma (mRCC) provide a unique approach to understand the molecular basis of treatment response and resistance. This is particularly important in the context of immunotherapies, which target key immune-tumor interactions. Unlike metastatic tissue biopsies, serial real-time profiling of mRCC is feasible with our noninvasive circulating tumor cell (CTC) approach. METHODS: We collected 457 longitudinal liquid biopsies from 104 patients with mRCC enrolled in one of two studies, either a prospective cohort or a phase II multicenter adaptive immunotherapy trial. Using a novel CTC capture and automated microscopy platform, we profiled CTC enumeration and expression of HLA I and programmed cell death-ligand 1 (PD-L1). Given their diametric immunological roles, we focused on the HLA I to PD-L1 ratio (HP ratio). RESULTS: Patients with radiographic responses showed significantly lower CTC abundances throughout treatment. Furthermore, patients whose CTC enumeration trajectory was in the highest quartile (> 0.12 CTCs/mL annually) had shorter overall survival (median 17.0 months v 21.1 months, P < .001). Throughout treatment, the HP ratio decreased in patients receiving immunotherapy but not in patients receiving tyrosine kinase inhibitors. Patients with an HP ratio trajectory in the highest quartile (≥ 0.0012 annually) displayed significantly shorter overall survival (median 18.4 months v 21.2 months, P = .003). CONCLUSION: In the first large longitudinal CTC study in mRCC to date to our knowledge, we identified the prognostic importance of CTC enumeration and the change over time of both CTC enumeration and the HP ratio. These insights into changes in both tumor burden and the molecular profile of tumor cells in response to different treatments provide potential biomarkers to predict and monitor response to immunotherapy in mRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/terapia , Antígeno B7-H1/metabolismo , Estudos Prospectivos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/terapia , Prognóstico
3.
Biomark Res ; 10(1): 26, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468853

RESUMO

INTRODUCTION: PD-L1 expression in non-small cell lung cancer (NSCLC) predicts response to immune checkpoint blockade, however is an imperfect biomarker given tumor heterogeneity, and the antigen presentation pathway requiring other components including HLA I expression. HLA I downregulation may contribute to resistance, warranting its evaluation in attempts to guide patient selection. In addition, earlier detection of acquired resistance could prompt earlier change in treatment and prolong patient survival. Analysis of circulating tumor cells (CTCs) captures heterogeneity across multiple sites of metastases, enables detection of changes in tumor burden that precede radiographic response, and can be obtained in serial fashion. METHODS: To quantify the expression of both PD-L1 and HLA I on CTCs, we developed exclusion-based sample preparation technology, achieving high-yield with gentle magnetic movement of antibody-labeled cells through virtual barriers of surface tension. To achieve clinical-grade quantification of rare cells, we employ high quality fluorescence microscopy image acquisition and automated image analysis together termed quantitative microscopy. RESULTS: In preparation for clinical laboratory implementation, we demonstrate high precision and accuracy of these methodologies using a diverse set of control materials. Preliminary testing of CTCs isolated from patients with NSCLC demonstrate heterogeneity in PD-L1 and HLA I expression and promising clinical value in predicting PFS in response to PD-L1 targeted therapies. CONCLUSIONS: By confirming high performance, we ensure compatibility for clinical laboratory implementation and future application to better predict and detect resistance to PD-L1 targeted therapy in patients with NSCLC.

4.
Mol Oncol ; 15(9): 2330-2344, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33604999

RESUMO

Although therapeutic options for patients with advanced renal cell carcinoma (RCC) have increased in the past decade, no biomarkers are yet available for patient stratification or evaluation of therapy resistance. Given the dynamic and heterogeneous nature of clear cell RCC (ccRCC), tumor biopsies provide limited clinical utility, but liquid biopsies could overcome these limitations. Prior liquid biopsy approaches have lacked clinically relevant detection rates for patients with ccRCC. This study employed ccRCC-specific markers, CAIX and CAXII, to identify circulating tumor cells (CTC) from patients with metastatic ccRCC. Distinct subtypes of ccRCC CTCs were evaluated for PD-L1 and HLA-I expression and correlated with patient response to therapy. CTC enumeration and expression of PD-L1 and HLA-I correlated with disease progression and treatment response, respectively. Longitudinal evaluation of a subset of patients demonstrated potential for CTC enumeration to serve as a pharmacodynamic biomarker. Further evaluation of phenotypic heterogeneity among CTCs is needed to better understand the clinical utility of this new biomarker.


Assuntos
Carcinoma de Células Renais/diagnóstico , Neoplasias Renais/diagnóstico , Células Neoplásicas Circulantes , Adulto , Idoso , Antígeno B7-H1/sangue , Biomarcadores Tumorais/sangue , Carcinoma de Células Renais/sangue , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Feminino , Antígenos de Histocompatibilidade Classe I/sangue , Humanos , Neoplasias Renais/sangue , Neoplasias Renais/patologia , Biópsia Líquida , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica
5.
Lab Chip ; 18(22): 3446-3458, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30334061

RESUMO

Rare cell populations provide a patient-centric tool to monitor disease treatment, response, and resistance. However, understanding rare cells is a complex problem, which requires cell isolation/purification and downstream molecular interrogation - processes challenged by non-target populations, which vary patient-to-patient and change with disease. As such, cell isolation platforms must be amenable to a range of sample types while maintaining high efficiency and purity. The multiplexed technology for automated extraction (mTAE) is a versatile magnetic bead-based isolation platform that facilitates positive, negative, and combinatorial selection with integrated protein staining and nucleic acid isolation. mTAE is validated by isolating circulating tumor cells (CTCs) - a model rare cell population - from breast and prostate cancer patient samples. Negative selection yielded high efficiency capture of CTCs while positive selection yielded higher purity with an average of only 95 contaminant cells captured per milliliter of processed whole blood. With combinatorial selection, an overall increase in capture efficiency was observed, highlighting the potential significance of integrating multiple capture approaches on a single platform. Following capture (and staining), on platform nucleic acid extraction enabled the detection of androgen receptor-related transcripts from CTCs isolated from prostate cancer patients. The flexibility (e.g. negative, positive, combinatorial selection) and capabilities (e.g. isolation, protein staining, and nucleic acid extraction) of mTAE enable users to freely interrogate specific cell populations, a capability required to understand the potential of emerging rare cell populations and readily adapt to the heterogeneity presented across clinical samples.


Assuntos
Separação Celular/instrumentação , Métodos Analíticos de Preparação de Amostras , Linhagem Celular , Desenho de Equipamento , Humanos , Células Neoplásicas Circulantes/patologia , Integração de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA