Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
PLoS One ; 19(5): e0303288, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38781243

RESUMO

BACKGROUND: Brain region segmentation and morphometry in humanized apolipoprotein E (APOE) mouse models with a human NOS2 background (HN) contribute to Alzheimer's disease (AD) research by demonstrating how various risk factors affect the brain. Photon-counting detector (PCD) micro-CT provides faster scan times than MRI, with superior contrast and spatial resolution to energy-integrating detector (EID) micro-CT. This paper presents a pipeline for mouse brain imaging, segmentation, and morphometry from PCD micro-CT. METHODS: We used brains of 26 mice from 3 genotypes (APOE22HN, APOE33HN, APOE44HN). The pipeline included PCD and EID micro-CT scanning, hybrid (PCD and EID) iterative reconstruction, and brain region segmentation using the Small Animal Multivariate Brain Analysis (SAMBA) tool. We applied SAMBA to transfer brain region labels from our new PCD CT atlas to individual PCD brains via diffeomorphic registration. Region-based and voxel-based analyses were used for comparisons by genotype and sex. RESULTS: Together, PCD and EID scanning take ~5 hours to produce images with a voxel size of 22 µm, which is faster than MRI protocols for mouse brain morphometry with voxel size above 40 µm. Hybrid iterative reconstruction generates PCD images with minimal artifacts and higher spatial resolution and contrast than EID images. Our PCD atlas is qualitatively and quantitatively similar to the prior MRI atlas and successfully transfers labels to PCD brains in SAMBA. Male and female mice had significant volume differences in 26 regions, including parts of the entorhinal cortex and cingulate cortex. APOE22HN brains were larger than APOE44HN brains in clusters from the hippocampus, a region where atrophy is associated with AD. CONCLUSIONS: This work establishes a pipeline for mouse brain analysis using PCD CT, from staining to imaging and labeling brain images. Our results validate the effectiveness of the approach, setting a foundation for research on AD mouse models while reducing scanning durations.


Assuntos
Encéfalo , Microtomografia por Raio-X , Animais , Encéfalo/diagnóstico por imagem , Camundongos , Microtomografia por Raio-X/métodos , Feminino , Masculino , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Processamento de Imagem Assistida por Computador/métodos , Apolipoproteínas E/genética , Camundongos Transgênicos
2.
Biomedicines ; 12(1)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255252

RESUMO

Age-related macular degeneration (AMD) has recently been linked to cognitive impairment. We hypothesized that AMD modifies the brain aging trajectory, and we conducted a longitudinal diffusion MRI study on 40 participants (20 with AMD and 20 controls) to reveal the location, extent, and dynamics of AMD-related brain changes. Voxel-based analyses at the first visit identified reduced volume in AMD participants in the cuneate gyrus, associated with vision, and the temporal and bilateral cingulate gyrus, linked to higher cognition and memory. The second visit occurred 2 years after the first and revealed that AMD participants had reduced cingulate and superior frontal gyrus volumes, as well as lower fractional anisotropy (FA) for the bilateral occipital lobe, including the visual and the superior frontal cortex. We detected faster rates of volume and FA reduction in AMD participants in the left temporal cortex. We identified inter-lingual and lingual-cerebellar connections as important differentiators in AMD participants. Bundle analyses revealed that the lingual gyrus had a lower streamline length in the AMD participants at the first visit, indicating a connection between retinal and brain health. FA differences in select inter-lingual and lingual cerebellar bundles at the second visit showed downstream effects of vision loss. Our analyses revealed widespread changes in AMD participants, beyond brain networks directly involved in vision processing.

3.
Brain Struct Funct ; 229(1): 231-249, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091051

RESUMO

APOE allelic variation is critical in brain aging and Alzheimer's disease (AD). The APOE2 allele associated with cognitive resilience and neuroprotection against AD remains understudied. We employed a multipronged approach to characterize the transition from middle to old age in mice with APOE2 allele, using behavioral assessments, image-derived morphometry and diffusion metrics, structural connectomics, and blood transcriptomics. We used sparse multiple canonical correlation analyses (SMCCA) for integrative modeling, and graph neural network predictions. Our results revealed brain sub-networks associated with biological traits, cognitive markers, and gene expression. The cingulate cortex emerged as a critical region, demonstrating age-associated atrophy and diffusion changes, with higher fractional anisotropy in males and middle-aged subjects. Somatosensory and olfactory regions were consistently highlighted, indicating age-related atrophy and sex differences. The hippocampus exhibited significant volumetric changes with age, with differences between males and females in CA3 and CA1 regions. SMCCA underscored changes in the cingulate cortex, somatosensory cortex, olfactory regions, and hippocampus in relation to cognition and blood-based gene expression. Our integrative modeling in aging APOE2 carriers revealed a central role for changes in gene pathways involved in localization and the negative regulation of cellular processes. Our results support an important role of the immune system and response to stress. This integrative approach offers novel insights into the complex interplay among brain connectivity, aging, and sex. Our study provides a foundation for understanding the impact of APOE2 allele on brain aging, the potential for detecting associated changes in blood markers, and revealing novel therapeutic intervention targets.


Assuntos
Doença de Alzheimer , Conectoma , Humanos , Pessoa de Meia-Idade , Feminino , Masculino , Camundongos , Animais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Apolipoproteína E2/genética , Apolipoproteína E2/metabolismo , Alelos , Encéfalo/metabolismo , Envelhecimento/genética , Cognição , Perfilação da Expressão Gênica , Atrofia/patologia
4.
J Alzheimers Dis ; 97(2): 635-648, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38160360

RESUMO

BACKGROUND: Alzheimer's disease (AD) involves brain neuropathologies such as amyloid plaque and hyperphosphorylated tau tangles and is accompanied by cognitive decline. Identifying the biological mechanisms underlying disease onset and progression based on quantifiable phenotypes will help understand disease etiology and devise therapies. OBJECTIVE: Our objective was to identify molecular pathways associated with hallmark AD biomarkers and cognitive status, accounting for variables such as age, sex, education, and APOE genotype. METHODS: We introduce a pathway-based statistical approach, extending the gene set likelihood ratio test to continuous phenotypes. We first analyzed independently each of the three phenotypes (amyloid-ß, tau, cognition) using continuous gene set likelihood ratio tests to account for covariates, including age, sex, education, and APOE genotype. The analysis involved 634 subjects with data available for all three phenotypes, allowing for the identification of common pathways. RESULTS: We identified 14 pathways significantly associated with amyloid-ß; 5 associated with tau; and 174 associated with cognition, which showed a larger number of pathways compared to biomarkers. A single pathway, vascular endothelial growth factor receptor binding (VEGF-RB), exhibited associations with all three phenotypes. Mediation analysis showed that among the VEGF-RB family genes, ITGA5 mediates the relationship between cognitive scores and pathological biomarkers. CONCLUSIONS: We presented a new statistical approach linking continuous phenotypes, gene expression across pathways, and covariates like sex, age, and education. Our results reinforced VEGF RB2's role in AD cognition and demonstrated ITGA5's significant role in mediating the AD pathology-cognition connection.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Proteínas tau/genética , Funções Verossimilhança , Peptídeos beta-Amiloides , Disfunção Cognitiva/psicologia , Biomarcadores , Apolipoproteínas E
5.
PLoS One ; 18(10): e0291733, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37796905

RESUMO

BACKGROUND: Cardiovascular disease (CVD) is associated with the apolipoprotein E (APOE) gene and lipid metabolism. This study aimed to develop an imaging-based pipeline to comprehensively assess cardiac structure and function in mouse models expressing different APOE genotypes using photon-counting computed tomography (PCCT). METHODS: 123 mice grouped based on APOE genotype (APOE2, APOE3, APOE4, APOE knockout (KO)), gender, human NOS2 factor, and diet (control or high fat) were used in this study. The pipeline included PCCT imaging on a custom-built system with contrast-enhanced in vivo imaging and intrinsic cardiac gating, spectral and temporal iterative reconstruction, spectral decomposition, and deep learning cardiac segmentation. Statistical analysis evaluated genotype, diet, sex, and body weight effects on cardiac measurements. RESULTS: Our results showed that PCCT offered high quality imaging with reduced noise. Material decomposition enabled separation of calcified plaques from iodine enhanced blood in APOE KO mice. Deep learning-based segmentation showed good performance with Dice scores of 0.91 for CT-based segmentation and 0.89 for iodine map-based segmentation. Genotype-specific differences were observed in left ventricular volumes, heart rate, stroke volume, ejection fraction, and cardiac index. Statistically significant differences were found between control and high fat diets for APOE2 and APOE4 genotypes in heart rate and stroke volume. Sex and weight were also significant predictors of cardiac measurements. The inclusion of the human NOS2 gene modulated these effects. CONCLUSIONS: This study demonstrates the potential of PCCT in assessing cardiac structure and function in mouse models of CVD which can help in understanding the interplay between genetic factors, diet, and cardiovascular health.


Assuntos
Doenças Cardiovasculares , Iodo , Camundongos , Humanos , Animais , Apolipoproteína E2/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Apolipoproteína E3/genética , Tomografia Computadorizada por Raios X , Camundongos Knockout , Doenças Cardiovasculares/diagnóstico por imagem , Doenças Cardiovasculares/genética
6.
bioRxiv ; 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37662249

RESUMO

Background: Alzheimer's disease involves brain pathologies such as amyloid plaque depositions and hyperphosphorylated tau tangles and is accompanied by cognitive decline. Identifying the biological mechanisms underlying disease onset and progression based on quantifiable phenotypes will help understand the disease etiology and devise therapies. Objective: Our objective was to identify molecular pathways associated with AD biomarkers (Amyloid-ß and tau) and cognitive status (MMSE) accounting for variables such as age, sex, education, and APOE genotype. Methods: We introduce a novel pathway-based statistical approach, extending the gene set likelihood ratio test to continuous phenotypes. We first analyzed independently each of the three phenotypes (Amyloid-ß, tau, cognition), using continuous gene set likelihood ratio tests to account for covariates, including age, sex, education, and APOE genotype. The analysis involved a large sample size with data available for all three phenotypes, allowing for the identification of common pathways. Results: We identified 14 pathways significantly associated with Amyloid-ß, 5 associated with tau, and 174 associated with MMSE. Surprisingly, the MMSE outcome showed a larger number of significant pathways compared to biomarkers. A single pathway, vascular endothelial growth factor receptor binding (VEGF-RB), exhibited significant associations with all three phenotypes. Conclusions: The study's findings highlight the importance of the VEGF signaling pathway in aging in AD. The complex interactions within the VEGF signaling family offer valuable insights for future therapeutic interventions.

7.
Tomography ; 9(2): 750-758, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-37104131

RESUMO

Providing method descriptions that are more detailed than currently available in typical peer reviewed journals has been identified as an actionable area for improvement. In the biochemical and cell biology space, this need has been met through the creation of new journals focused on detailed protocols and materials sourcing. However, this format is not well suited for capturing instrument validation, detailed imaging protocols, and extensive statistical analysis. Furthermore, the need for additional information must be counterbalanced by the additional time burden placed upon researchers who may be already overtasked. To address these competing issues, this white paper describes protocol templates for positron emission tomography (PET), X-ray computed tomography (CT), and magnetic resonance imaging (MRI) that can be leveraged by the broad community of quantitative imaging experts to write and self-publish protocols in protocols.io. Similar to the Structured Transparent Accessible Reproducible (STAR) or Journal of Visualized Experiments (JoVE) articles, authors are encouraged to publish peer reviewed papers and then to submit more detailed experimental protocols using this template to the online resource. Such protocols should be easy to use, readily accessible, readily searchable, considered open access, enable community feedback, editable, and citable by the author.


Assuntos
Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Imageamento por Ressonância Magnética
8.
Cereb Cortex ; 33(9): 5307-5322, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36320163

RESUMO

The selective vulnerability of brain networks in individuals at risk for Alzheimer's disease (AD) may help differentiate pathological from normal aging at asymptomatic stages, allowing the implementation of more effective interventions. We used a sample of 72 people across the age span, enriched for the APOE4 genotype to reveal vulnerable networks associated with a composite AD risk factor including age, genotype, and sex. Sparse canonical correlation analysis (CCA) revealed a high weight associated with genotype, and subgraphs involving the cuneus, temporal, cingulate cortices, and cerebellum. Adding cognitive metrics to the risk factor revealed the highest cumulative degree of connectivity for the pericalcarine cortex, insula, banks of the superior sulcus, and the cerebellum. To enable scaling up our approach, we extended tensor network principal component analysis, introducing CCA components. We developed sparse regression predictive models with errors of 17% for genotype, 24% for family risk factor for AD, and 5 years for age. Age prediction in groups including cognitively impaired subjects revealed regions not found using only normal subjects, i.e. middle and transverse temporal, paracentral and superior banks of temporal sulcus, as well as the amygdala and parahippocampal gyrus. These modeling approaches represent stepping stones towards single subject prediction.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Imageamento por Ressonância Magnética , Encéfalo/patologia , Genótipo , Envelhecimento
9.
bioRxiv ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38168445

RESUMO

Alzheimer's disease (AD) remains one of the most extensively researched neurodegenerative disorders due to its widespread prevalence and complex risk factors. Age is a crucial risk factor for AD, which can be estimated by the disparity between physiological age and estimated brain age. To model AD risk more effectively, integrating biological, genetic, and cognitive markers is essential. Here, we utilized mouse models expressing the major APOE human alleles and human nitric oxide synthase 2 to replicate genetic risk for AD and a humanized innate immune response. We estimated brain age employing a multivariate dataset that includes brain connectomes, APOE genotype, subject traits such as age and sex, and behavioral data. Our methodology used Feature Attention Graph Neural Networks (FAGNN) for integrating different data types. Behavioral data were processed with a 2D Convolutional Neural Network (CNN), subject traits with a 1D CNN, brain connectomes through a Graph Neural Network using quadrant attention module. The model yielded a mean absolute error for age prediction of 31.85 days, with a root mean squared error of 41.84 days, outperforming other, reduced models. In addition, FAGNN identified key brain connections involved in the aging process. The highest weights were assigned to the connections between cingulum and corpus callosum, striatum, hippocampus, thalamus, hypothalamus, cerebellum, and piriform cortex. Our study demonstrates the feasibility of predicting brain age in models of aging and genetic risk for AD. To verify the validity of our findings, we compared Fractional Anisotropy (FA) along the tracts of regions with the highest connectivity, the Return-to-Origin Probability (RTOP), Return-to-Plane Probability (RTPP), and Return-to-Axis Probability (RTAP), which showed significant differences between young, middle-aged, and old age groups. Younger mice exhibited higher FA, RTOP, RTAP, and RTPP compared to older groups in the selected connections, suggesting that degradation of white matter tracts plays a critical role in aging and for FAGNN's selections. Our analysis suggests a potential neuroprotective role of APOE2, relative to APOE3 and APOE4, where APOE2 appears to mitigate age-related changes. Our findings highlighted a complex interplay of genetics and brain aging in the context of AD risk modeling.

11.
Front Neurosci ; 16: 848654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784847

RESUMO

Spatial navigation and orientation are emerging as promising markers for altered cognition in prodromal Alzheimer's disease, and even in cognitively normal individuals at risk for Alzheimer's disease. The different APOE gene alleles confer various degrees of risk. The APOE2 allele is considered protective, APOE3 is seen as control, while APOE4 carriage is the major known genetic risk for Alzheimer's disease. We have used mouse models carrying the three humanized APOE alleles and tested them in a spatial memory task in the Morris water maze. We introduce a new metric, the absolute winding number, to characterize the spatial search strategy, through the shape of the swim path. We show that this metric is robust to noise, and works for small group samples. Moreover, the absolute winding number better differentiated APOE3 carriers, through their straighter swim paths relative to both APOE2 and APOE4 genotypes. Finally, this novel metric supported increased vulnerability in APOE4 females. We hypothesized differences in spatial memory and navigation strategies are linked to differences in brain networks, and showed that different genotypes have different reliance on the hippocampal and caudate putamen circuits, pointing to a role for white matter connections. Moreover, differences were most pronounced in females. This departure from a hippocampal centric to a brain network approach may open avenues for identifying regions linked to increased risk for Alzheimer's disease, before overt disease manifestation. Further exploration of novel biomarkers based on spatial navigation strategies may enlarge the windows of opportunity for interventions. The proposed framework will be significant in dissecting vulnerable circuits associated with cognitive changes in prodromal Alzheimer's disease.

12.
Magn Reson Imaging ; 92: 45-57, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688400

RESUMO

Magnetic resonance (MR) imaging (MRI) is commonly used to diagnose, assess and monitor stroke. Accurate and timely segmentation of stroke lesions provides the anatomico-structural information that can aid physicians in predicting prognosis, as well as in decision making and triaging for various rehabilitation strategies. To segment stroke lesions, MR protocols, including diffusion-weighted imaging (DWI) and T2-weighted fluid attenuated inversion recovery (FLAIR) are often utilized. These imaging sequences are usually acquired with different spatial resolutions due to time constraints. Within the same image, voxels may be anisotropic, with reduced resolution along slice direction for diffusion scans in particular. In this study, we evaluate the ability of 2D and 3D U-Net Convolutional Neural Network (CNN) architectures to segment ischemic stroke lesions using single contrast (DWI) and dual contrast images (T2w FLAIR and DWI). The predicted segmentations correlate with post-stroke motor outcome measured by the National Institutes of Health Stroke Scale (NIHSS) and Fugl-Meyer Upper Extremity (FM-UE) index based on the lesion loads overlapping the corticospinal tracts (CST), which is a neural substrate for motor movement and function. Although the four methods performed similarly, the 2D multimodal U-Net achieved the best results with a mean Dice of 0.737 (95% CI: 0.705, 0.769) and a relatively high correlation between the weighted lesion load and the NIHSS scores (both at baseline and at 90 days). A monotonically constrained quintic polynomial regression yielded R2 = 0.784 and 0.875 for weighted lesion load versus baseline and 90-Days NIHSS respectively, and better corrected Akaike information criterion (AICc) scores than those of the linear regression. In addition, using the quintic polynomial regression model to regress the weighted lesion load to the 90-Days FM-UE score results in an R2 of 0.570 with a better AICc score than that of the linear regression. Our results suggest that the multi-contrast information enhanced the accuracy of the segmentation and the prediction accuracy for upper extremity motor outcomes. Expanding the training dataset to include different types of stroke lesions and more data points will help add a temporal longitudinal aspect and increase the accuracy. Furthermore, adding patient-specific data may improve the inference about the relationship between imaging metrics and functional outcomes.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Imagem de Difusão por Ressonância Magnética/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia
13.
Nat Commun ; 12(1): 4877, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385434

RESUMO

Chronically elevated intraocular pressure (IOP) is the major risk factor of primary open-angle glaucoma, a leading cause of blindness. Dysfunction of the trabecular meshwork (TM), which controls the outflow of aqueous humor (AqH) from the anterior chamber, is the major cause of elevated IOP. Here, we demonstrate that mice deficient in the Krüppel-like zinc finger transcriptional factor GLI-similar-1 (GLIS1) develop chronically elevated IOP. Magnetic resonance imaging and histopathological analysis reveal that deficiency in GLIS1 expression induces progressive degeneration of the TM, leading to inefficient AqH drainage from the anterior chamber and elevated IOP. Transcriptome and cistrome analyses identified several glaucoma- and extracellular matrix-associated genes as direct transcriptional targets of GLIS1. We also identified a significant association between GLIS1 variant rs941125 and glaucoma in humans (P = 4.73 × 10-6), further supporting a role for GLIS1 into glaucoma etiology. Our study identifies GLIS1 as a critical regulator of TM function and maintenance, AqH dynamics, and IOP.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Glaucoma/fisiopatologia , Pressão Intraocular/fisiologia , Malha Trabecular/fisiopatologia , Fatores de Transcrição/metabolismo , Animais , Humor Aquoso/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Glaucoma/genética , Glaucoma/metabolismo , Células HEK293 , Humanos , Pressão Intraocular/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA-Seq/métodos , Malha Trabecular/metabolismo , Fatores de Transcrição/genética
14.
Neuroimage Clin ; 30: 102594, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33662707

RESUMO

Age-related macular degeneration (AMD) is a common retina disease associated with cognitive impairment in older adults. The mechanism(s) that account for the link between AMD and cognitive decline remain unclear. Here we aim to shed light on this issue by investigating whether relationships between cognition and white matter in the brain differ by AMD status. In a direct group comparison of brain connectometry maps from diffusion weighted images, AMD patients showed significantly weaker quantitative anisotropy (QA) than healthy controls, predominantly in the splenium and left optic radiation. The QA of these tracts, however, did not correlate with the visual acuity measure, indicating that this group effect is not directly driven by visual loss. The AMD and control groups did not differ significantly in cognitive performance.Across all participants, better cognitive performance (e.g. verbal fluency) is associated with stronger connectivity strength in white matter tracts including the splenium and the left inferior fronto-occipital fasciculus/inferior longitudinal fasciculus. However, there were significant interactions between group and cognitive performance (verbal fluency, memory), suggesting that the relation between QA and cognitive performance was weaker in AMD patients than in controls.This may be explained by unmeasured determinants of performance that are more common or impactful in AMD or by a recruitment bias whereby the AMD group had higher cognitive reserve. In general, our findings suggest that neural degeneration in the brain might occur in parallel to AMD in the eyes, although the participants studied here do not (yet) exhibit overt cognitive declines per standard assessments.


Assuntos
Degeneração Macular , Substância Branca , Idoso , Anisotropia , Encéfalo/diagnóstico por imagem , Cognição , Humanos , Degeneração Macular/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
15.
Alzheimers Dement ; 17(4): 561-573, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33480182

RESUMO

INTRODUCTION: The study of Alzheimer's disease (AD) has revealed biological pathways with implications for disease neuropathology and pathophysiology. These pathway-level effects may also be mediated by individual characteristics or covariates such as age or sex. Evaluation of AD biological pathways in the context of interactions with these covariates is critical to the understanding of AD as well as the development of model systems used to study the disease. METHODS: Gene set enrichment methods are powerful tools used to interpret gene-level statistics at the level of biological pathways. We introduce a method for quantifying gene set enrichment using likelihood ratio-derived test statistics (gsLRT), which accounts for sample covariates like age and sex. We then use our method to test for age and sex interactions with protein expression levels in AD and to compare the pathway results between human and mouse species. RESULTS: Our method, based on nested logistic regressions is competitive with the existing standard for gene set testing in the context of linear models and complex experimental design. The gene sets we identify as having a significant association with AD-both with and without additional covariate interactions-are validated by previous studies. Differences between gsLRT results on mouse and human datasets are observed. DISCUSSION: Characterizing biological pathways involved in AD builds on the important work involving single gene drivers. Our gene set enrichment method finds pathways that are significantly related to AD while accounting for covariates that may be relevant to disease development. The method highlights commonalities and differences between human AD and mouse models, which may inform the development of higher fidelity models for the study of AD.


Assuntos
Doença de Alzheimer/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Modelos Estatísticos , Fatores Etários , Animais , Humanos , Camundongos , Fatores Sexuais
16.
Magn Reson Imaging ; 76: 26-38, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33010377

RESUMO

G Protein-Coupled Receptor Kinase-Interacting Protein-1 (GIT1) regulates neuronal functions, including cell and axon migration and synapse formation and maintenance, and GIT1 knockout (KO) mice exhibit learning and memory deficits. We noted that male and female GIT1-KO mice exhibit neuroimaging phenotypes including microcephaly, and altered cortical layering, with a decrease in neuron density in cortical layer V. Micro-CT and magnetic resonance microscopy (MRM) were used to identify morphometric phenotypes for the skulls and throughout the GIT1-KO brains. High field MRM of actively-stained mouse brains from GIT1-KO and wild type (WT) controls (n = 6 per group) allowed segmenting 37 regions, based on co-registration to the Waxholm Space atlas. Overall brain size in GIT1-KO mice was ~32% smaller compared to WT controls. After correcting for brain size, several regions were significantly different in GIT1-KO mice relative to WT, including the gray matter of the ventral thalamic nuclei and the rest of the thalamus, the inferior colliculus, and pontine nuclei. GIT1-KO mice had reduced volume of white matter tracts, most notably in the anterior commissure (~26% smaller), but also in the cerebral peduncle, fornix, and spinal trigeminal tract. On the other hand, the basal ganglia appeared enlarged in GIT1-KO mice, including the globus pallidus, caudate putamen, and particularly the accumbens - supporting a possible vulnerability to addiction. Volume based morphometry based on high-resolution MRM (21.5 µm isotropic voxels) was effective in detecting overall, and local differences in brain volumes in GIT1-KO mice, including in white matter tracts. The reduced relative volume of specific brain regions suggests a critical, but not uniform, role for GIT1 in brain development, conducive to brain microcephaly, and aberrant connectivity.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Proteínas de Ciclo Celular/deficiência , Proteínas Ativadoras de GTPase/deficiência , Microcefalia/diagnóstico por imagem , Microcefalia/patologia , Neuroimagem , Animais , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Feminino , Proteínas Ativadoras de GTPase/genética , Técnicas de Inativação de Genes , Masculino , Camundongos , Microcefalia/genética , Neurônios/metabolismo , Neurônios/patologia , Microtomografia por Raio-X
17.
Cell ; 181(6): 1364-1379.e14, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32470395

RESUMO

Small molecule neurotensin receptor 1 (NTSR1) agonists have been pursued for more than 40 years as potential therapeutics for psychiatric disorders, including drug addiction. Clinical development of NTSR1 agonists has, however, been precluded by their severe side effects. NTSR1, a G protein-coupled receptor (GPCR), signals through the canonical activation of G proteins and engages ß-arrestins to mediate distinct cellular signaling events. Here, we characterize the allosteric NTSR1 modulator SBI-553. This small molecule not only acts as a ß-arrestin-biased agonist but also extends profound ß-arrestin bias to the endogenous ligand by selectively antagonizing G protein signaling. SBI-553 shows efficacy in animal models of psychostimulant abuse, including cocaine self-administration, without the side effects characteristic of balanced NTSR1 agonism. These findings indicate that NTSR1 G protein and ß-arrestin activation produce discrete and separable physiological effects, thus providing a strategy to develop safer GPCR-targeting therapeutics with more directed pharmacological action.


Assuntos
Comportamento Aditivo/metabolismo , Receptores de Neurotensina/metabolismo , beta-Arrestinas/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Comportamento Aditivo/tratamento farmacológico , Linhagem Celular , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Bibliotecas de Moléculas Pequenas/farmacologia
18.
Front Phys ; 82020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33928076

RESUMO

Network approaches provide sensitive biomarkers for neurological conditions, such as Alzheimer's disease (AD). Mouse models can help advance our understanding of underlying pathologies, by dissecting vulnerable circuits. While the mouse brain contains less white matter compared to the human brain, axonal diameters compare relatively well (e.g., ~0.6 µm in the mouse and ~0.65-1.05 µm in the human corpus callosum). This makes the mouse an attractive test bed for novel diffusion models and imaging protocols. Remaining questions on the accuracy and uncertainty of connectomes have prompted us to evaluate diffusion imaging protocols with various spatial and angular resolutions. We have derived structural connectomes by extracting gradient subsets from a high-spatial, high-angular resolution diffusion acquisition (120 directions, 43-µm-size voxels). We have simulated protocols with 12, 15, 20, 30, 45, 60, 80, 100, and 120 angles and at 43, 86, or 172-µm voxel sizes. The rotational stability of these schemes increased with angular resolution. The minimum condition number was achieved for 120 directions, followed by 60 and 45 directions. The percentage of voxels containing one dyad was exceeded by those with two dyads after 45 directions, and for the highest spatial resolution protocols. For the 86- or 172-µm resolutions, these ratios converged toward 55% for one and 39% for two dyads, respectively, with <7% from voxels with three dyads. Tractography errors, estimated through dyad dispersion, decreased most with angular resolution. Spatial resolution effects became noticeable at 172 µm. Smaller tracts, e.g., the fornix, were affected more than larger ones, e.g., the fimbria. We observed an inflection point for 45 directions, and an asymptotic behavior after 60 directions, corresponding to similar projection density maps. Spatially downsampling to 86 µm, while maintaining the angular resolution, achieved a subgraph similarity of 96% relative to the reference. Using 60 directions with 86- or 172-µm voxels resulted in 94% similarity. Node similarity metrics indicated that major white matter tracts were more robust to downsampling relative to cortical regions. Our study provides guidelines for new protocols in mouse models of neurological conditions, so as to achieve similar connectomes, while increasing efficiency.

19.
Proc Natl Acad Sci U S A ; 116(30): 15262-15271, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31285321

RESUMO

Giant ankyrin-B (ankB) is a neurospecific alternatively spliced variant of ANK2, a high-confidence autism spectrum disorder (ASD) gene. We report that a mouse model for human ASD mutation of giant ankB exhibits increased axonal branching in cultured neurons with ectopic CNS axon connectivity, as well as with a transient increase in excitatory synapses during postnatal development. We elucidate a mechanism normally limiting axon branching, whereby giant ankB localizes to periodic axonal plasma membrane domains through L1 cell-adhesion molecule protein, where it couples microtubules to the plasma membrane and prevents microtubule entry into nascent axon branches. Giant ankB mutation or deficiency results in a dominantly inherited impairment in selected communicative and social behaviors combined with superior executive function. Thus, gain of axon branching due to giant ankB-deficiency/mutation is a candidate cellular mechanism to explain aberrant structural connectivity and penetrant behavioral consequences in mice as well as humans bearing ASD-related ANK2 mutations.


Assuntos
Anquirinas/genética , Transtorno do Espectro Autista/genética , Molécula L1 de Adesão de Célula Nervosa/genética , Crescimento Neuronal , Neurônios/metabolismo , Sinapses/metabolismo , Processamento Alternativo , Animais , Anquirinas/metabolismo , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Comportamento Animal , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Conectoma , Modelos Animais de Doenças , Função Executiva/fisiologia , Expressão Gênica , Técnicas de Introdução de Genes , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Mutação , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neurônios/patologia , Cultura Primária de Células , Comportamento Social , Sinapses/patologia
20.
Proc Natl Acad Sci U S A ; 116(31): 15686-15695, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31209033

RESUMO

ßII-spectrin is the generally expressed member of the ß-spectrin family of elongated polypeptides that form micrometer-scale networks associated with plasma membranes. We addressed in vivo functions of ßII-spectrin in neurons by knockout of ßII-spectrin in mouse neural progenitors. ßII-spectrin deficiency caused severe defects in long-range axonal connectivity and axonal degeneration. ßII-spectrin-null neurons exhibited reduced axon growth, loss of actin-spectrin-based periodic membrane skeleton, and impaired bidirectional axonal transport of synaptic cargo. We found that ßII-spectrin associates with KIF3A, KIF5B, KIF1A, and dynactin, implicating spectrin in the coupling of motors and synaptic cargo. ßII-spectrin required phosphoinositide lipid binding to promote axonal transport and restore axon growth. Knockout of ankyrin-B (AnkB), a ßII-spectrin partner, primarily impaired retrograde organelle transport, while double knockout of ßII-spectrin and AnkB nearly eliminated transport. Thus, ßII-spectrin promotes both axon growth and axon stability through establishing the actin-spectrin-based membrane-associated periodic skeleton as well as enabling axonal transport of synaptic cargo.


Assuntos
Axônios/metabolismo , Encéfalo/metabolismo , Membrana Celular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Espectrina/metabolismo , Animais , Encéfalo/citologia , Membrana Celular/genética , Conectoma , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Espectrina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA