Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 300: 115753, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36162546

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Parkinson's disease (PD) is a prominent health challenge characterized by complex aetiology and limited therapeutic breakthroughs. Datura metel (DM) is a medicinal plant containing active phytoconstituents with neuropharmacological potentials. In traditional medicine, it exerts anticholinergic, anti-inflammatory and antioxidant effects, and protection from organophosphate poisoning inclusively involved in the pharmacotherapy of PD. Its other PD-related medicinal potency includes treatment of motor sickness and bradycardia. However, the exact mechanisms of anti-PD effects of its phytoconstituents remain underexplored. MATERIALS AND METHODS: In this study, methanolic extract of DM was evaluated for anti-PD behavioural effects in vivo haloperidol-induced cataleptic mice. The GC-MS-identified phytochemicals were studied for one-drug-multi-target inhibitory mechanisms against some key targets for PD treatment, alpha-synuclein (ASN) and dopa decarboxylase (DDC) using molecular docking. RESULTS: and discussion: Chronic administration of 50, 100 and 200 mg/kg of DM extract improved the 14-s latency time induced by haloperidol to 54, 54 and 57 s respectively, whereas levodopa (30 mg/kg) produced 47 s in rotarod tests. Similarly, the descending times for haloperidol-induced cataleptic mice were significantly reduced from 110 s to 17.7, 17.7 and 12.5 s by the respective chronic doses of DM extract, whereas levodopa-administered mice spent 17.5 s descending the same 30 cm pole. The interesting motor coordination enhancements are suggestively due to synergistic inhibition of ASN and DCC by the phytoconstituents of DM, especially, atropine and scopolamine. From the docking analysis, the two phytochemicals interacted more potently with the active therapeutic sites of the dual targets than levodopa and carbidopa. CONCLUSION: Methanolic extract of DM contains active phytochemicals for multi-target-directed antiparkinsonian mechanisms amenable for further studies.


Assuntos
Datura metel , Doença de Parkinson , Animais , Antioxidantes/farmacologia , Antiparkinsonianos/farmacologia , Derivados da Atropina , Carbidopa , Antagonistas Colinérgicos , Dopa Descarboxilase , Haloperidol/farmacologia , Levodopa/farmacologia , Metanol , Camundongos , Simulação de Acoplamento Molecular , Doença de Parkinson/tratamento farmacológico , Compostos Fitoquímicos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Escopolamina , alfa-Sinucleína
2.
Curr Res Chem Biol ; 2: 100021, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35815068

RESUMO

Viral diseases are prominent among the widely spread infections threatening human well-being. Real-life clinical successes of the few available therapeutics are challenged by pathogenic resistance and suboptimal delivery to target sites. Nanotechnology has aided the design of functionalised and non-functionalised Au and Ag nanobiomaterials through physical, chemical and biological (green synthesis) methods with improved antiviral efficacy and delivery. In this review, innovative designs as well as interesting antiviral activities of the nanotechnology-inclined biomaterials of Au and Ag, reported in the last 5 years were critically overviewed against several viral diseases affecting man. These include influenza, respiratory syncytial, adenovirus, severe acute respiratory syndromes (SARS), rotavirus, norovirus, measles, chikungunya, HIV, herpes simplex virus, dengue, polio, enterovirus and rift valley fever virus. Notably identified among the nanotechnologically designed promising antiviral agents include AuNP-M2e peptide vaccine, AgNP of cinnamon bark extract and AgNP of oseltamivir for influenza, PVP coated AgNP for RSV, PVP-AgNPs for SARS-CoV-2, AuNRs of a peptide pregnancy-induce d hypertension and AuNP nanocarriers of antigen for MERS-CoV and SARS-CoV respectively. Others are AgNPs of collagen and Bacillus subtilis for rotavirus, AgNPs labelled Ag30-SiO 2 for murine norovirus in water, AuNPs of Allium sativum and AgNPs of ribavirin for measles, AgNPs of Citrus limetta and Andrographis Paniculata for Chikungunya, AuNPs of efavirenz and stavudine, and AgNPs-curcumin for HIV, NPAuG3-S8 for HSV, AgNPs of Moringa oleifera and Bruguiera cylindrica for dengue while AgNPs of polyethyleneimine and siRNA analogues displayed potency against enterovirus. The highlighted candidates are recommended for further translational studies towards antiviral therapeutic designs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA