Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38404013

RESUMO

While there is a considerable body of knowledge regarding the molecular and structural biology and biochemistry of archaeal information processing machineries, far less is known about the nature of the substrate for these machineries-the archaeal nucleoid. In this article, we will describe recent advances in our understanding of the three-dimensional organization of the chromosomes of model organisms in the crenarchaeal phylum.

2.
Nat Microbiol ; 9(1): 263-273, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110698

RESUMO

Proteins in the structural maintenance of chromosomes (SMC) superfamily play key roles in chromosome organization and are ubiquitous across all domains of life. However, SMC proteins are notably absent in the Desulfurococcales of phylum Crenarchaeota. Intrigued by this observation, we performed chromosome conformation capture experiments in the model Desulfurococcales species Aeropyrum pernix. As in other archaea, we observe chromosomal interaction domains across the chromosome. The boundaries between chromosomal interaction domains show a dependence on transcription and translation for their definition. Importantly, however, we reveal an additional higher-order, bipartite organization of the chromosome-with a small high-gene-expression and self-interacting domain that is defined by transcriptional activity and loop structures. Viewing these data in the context of the distribution of SMC superfamily proteins in the Crenarchaeota, we suggest that the organization of the Aeropyrum genome represents an evolutionary antecedent of the compartmentalized architecture observed in the Sulfolobus lineage.


Assuntos
Crenarchaeota , Sulfolobus , Archaea/genética , Crenarchaeota/genética , Expressão Gênica , Sulfolobus/genética , Cromossomos
3.
Nat Microbiol ; 7(6): 820-830, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35618771

RESUMO

In all organisms, the DNA sequence and the structural organization of chromosomes affect gene expression. The extremely thermophilic crenarchaeon Sulfolobus has one circular chromosome with three origins of replication. We previously revealed that this chromosome has defined A and B compartments that have high and low gene expression, respectively. As well as higher levels of gene expression, the A compartment contains the origins of replication. To evaluate the impact of three-dimensional organization on genome evolution, we characterized the effect of replication origins and compartmentalization on primary sequence evolution in eleven Sulfolobus species. Using single-nucleotide polymorphism analyses, we found that distance from an origin of replication was associated with increased mutation rates in the B but not in the A compartment. The enhanced polymorphisms distal to replication origins suggest that replication termination may have a causal role in their generation. Further mutational analyses revealed that the sequences in the A compartment are less likely to be mutated, and that there is stronger purifying selection than in the B compartment. Finally, we applied the Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) to show that the B compartment is less accessible than the A compartment. Taken together, our data suggest that compartmentalization of chromosomal DNA can influence chromosome evolution in Sulfolobus. We propose that the A compartment serves as a haven for stable maintenance of gene sequences, while sequences in the B compartment can be diversified.


Assuntos
Sulfolobus , Archaea/genética , Cromossomos , Evolução Molecular , Origem de Replicação , Sulfolobus/genética
4.
FEMS Microbiol Rev ; 45(4)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-33524101

RESUMO

The integration of mobile genetic elements into their host chromosome influences the immediate fate of cellular organisms and gradually shapes their evolution. Site-specific recombinases catalyzing this integration have been extensively characterized both in bacteria and eukarya. More recently, a number of reports provided the in-depth characterization of archaeal tyrosine recombinases and highlighted new particular features not observed in the other two domains. In addition to being active in extreme environments, archaeal integrases catalyze reactions beyond site-specific recombination. Some of these integrases can catalyze low-sequence specificity recombination reactions with the same outcome as homologous recombination events generating deep rearrangements of their host genome. A large proportion of archaeal integrases are termed suicidal due to the presence of a specific recombination target within their own gene. The paradoxical maintenance of integrases that disrupt their gene upon integration implies novel mechanisms for their evolution. In this review, we assess the diversity of the archaeal tyrosine recombinases using a phylogenomic analysis based on an exhaustive similarity network. We outline the biochemical, ecological and evolutionary properties of these enzymes in the context of the families we identified and emphasize similarities and differences between archaeal recombinases and their bacterial and eukaryal counterparts.


Assuntos
Archaea , Integrases , Archaea/genética , Eucariotos , Recombinases/genética , Tirosina/genética
5.
Mol Biol Evol ; 37(6): 1727-1743, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32068866

RESUMO

Mobile genetic elements (MGEs) often encode integrases which catalyze the site-specific insertion of their genetic information into the host genome and the reverse reaction of excision. Hyperthermophilic archaea harbor integrases belonging to the SSV-family which carry the MGE recombination site within their open reading frame. Upon integration into the host genome, SSV integrases disrupt their own gene into two inactive pseudogenes and are termed suicidal for this reason. The evolutionary maintenance of suicidal integrases, concurring with the high prevalence and multiples recruitments of these recombinases by archaeal MGEs, is highly paradoxical. To elucidate this phenomenon, we analyzed the wide phylogenomic distribution of a prominent class of suicidal integrases which revealed a highly variable integration site specificity. Our results highlighted the remarkable hybrid nature of these enzymes encoded from the assembly of inactive pseudogenes of different origins. The characterization of the biological properties of one of these integrases, IntpT26-2 showed that this enzyme was active over a wide range of temperatures up to 99 °C and displayed a less-stringent site specificity requirement than comparable integrases. These observations concurred in explaining the pervasiveness of these suicidal integrases in the most hyperthermophilic organisms. The biochemical and phylogenomic data presented here revealed a target site switching system operating on highly thermostable integrases and suggested a new model for split gene reconstitution. By generating fast-evolving pseudogenes at high frequency, suicidal integrases constitute a powerful model to approach the molecular mechanisms involved in the generation of active genes variants by the recombination of proto-genes.


Assuntos
Evolução Molecular , Integrases/metabolismo , Pseudogenes , Thermococcus/enzimologia , Fontes Hidrotermais , Integrases/genética , Sequências Repetitivas Dispersas , Thermococcus/genética , Thermococcus/isolamento & purificação
6.
Bioinformatics ; 36(5): 1629-1631, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31589313

RESUMO

MOTIVATION: Comparative plasmid genome analyses require complex tools, the manipulation of large numbers of sequences and constitute a daunting task for the wet bench experimentalist. Dedicated plasmid databases are sparse, only comprise bacterial plasmids and provide exclusively access to sequence similarity searches. RESULTS: We have developed Web-Assisted Symbolic Plasmid Synteny (WASPS), a web service granting protein and DNA sequence similarity searches against a database comprising all completely sequenced natural plasmids from bacterial, archaeal and eukaryal origin. This database pre-calculates orthologous protein clustering and enables WASPS to generate fully resolved plasmid synteny maps in real time using internal and user-provided DNA sequences. AVAILABILITY AND IMPLEMENTATION: WASPS queries befit all current browsers such as Firefox, Edge or Safari while the best functionality is achieved with Chrome. Internet Explorer is not supported. WASPS is freely accessible at https://archaea.i2bc.paris-saclay.fr/wasps/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Computadores , Software , Internet , Plasmídeos , Sintenia
7.
Environ Microbiol ; 21(12): 4685-4705, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31503394

RESUMO

Although plasmids play an important role in biological evolution, the number of plasmid families well-characterized in terms of geographical distribution and evolution remains limited, especially in archaea. Here, we describe the first systematic study of an archaeal plasmid family, the pT26-2 plasmid family. The in-depth analysis of the distribution, biogeography and host-plasmid co-evolution patterns of 26 integrated and 3 extrachromosomal plasmids of this plasmid family shows that they are widespread in Thermococcales and Methanococcales isolated from around the globe but are restricted to these two orders. All members of the family share seven core genes but employ different integration and replication strategies. Phylogenetic analysis of the core genes and CRISPR spacer distribution suggests that plasmids of the pT26-2 family evolved with their hosts independently in Thermococcales and Methanococcales, despite these hosts exhibiting similar geographic distribution. Remarkably, core genes are conserved even in integrated plasmids that have lost replication genes and/or replication origins suggesting that they may be beneficial for their hosts. We hypothesize that the core proteins encode for a novel type of DNA/protein transfer mechanism, explaining the widespread oceanic distribution of the pT26-2 plasmid family.


Assuntos
Archaea/genética , Evolução Molecular , Plasmídeos/genética , Archaea/classificação , Archaea/isolamento & purificação , Archaea/metabolismo , Filogenia , Plasmídeos/metabolismo
8.
Antonie Van Leeuwenhoek ; 112(3): 351-365, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30232678

RESUMO

Salinity is an important environmental factor influencing microbial community composition. To better understand this influence, we determined the bacterial communities present in 17 different sites of brackish sediment (underwater) and soil (surface) samples from the Camargue region (Rhône river delta) in southern France during the fall of 2013 and 2014 using pyrosequencing of the V3-V4 regions of the 16S rRNA genes amplified by PCR. This region is known for abundant flora and fauna and, though saline, 30% of rice consumed in France is grown here. We found that bacterial abundance in 1 g of soil or sediment, calculated by qPCR, was higher in sediments than in surface soil samples. Members belonging to the Proteobacteria, Bacteroidetes, Chloroflexi and Firmicutes phyla dominated the bacterial communities of sediment samples, while members belonging to the Proteobacteria, Bacteroidetes, Gemmatimonadetes, Actinobacteria, Firmicutes and Acidobacteria phyla dominated the bacterial communities of the soil samples. The most abundant bacterial genera present in the saline sediments and soils from the Camargue belonged mostly to halophilic and sulphate reducing bacteria, suggesting that the Camargue may be a valuable system to investigate saline, yet agriculturally productive, sediment and soil microbial ecosystem.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Estuários , Sedimentos Geológicos/microbiologia , Microbiologia do Solo , Bactérias/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , França , Mar Mediterrâneo , Metagenômica , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
9.
PLoS Genet ; 13(6): e1006847, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28628615

RESUMO

One of the major mechanisms driving the evolution of all organisms is genomic rearrangement. In hyperthermophilic Archaea of the order Thermococcales, large chromosomal inversions occur so frequently that even closely related genomes are difficult to align. Clearly not resulting from the native homologous recombination machinery, the causative agent of these inversions has remained elusive. We present a model in which genomic inversions are catalyzed by the integrase enzyme encoded by a family of mobile genetic elements. We characterized the integrase from Thermococcus nautili plasmid pTN3 and showed that besides canonical site-specific reactions, it catalyzes low sequence specificity recombination reactions with the same outcome as homologous recombination events on DNA segments as short as 104bp both in vitro and in vivo, in contrast to other known tyrosine recombinases. Through serial culturing, we showed that the integrase-mediated divergence of T. nautili strains occurs at an astonishing rate, with at least four large-scale genomic inversions appearing within 60 generations. Our results and the ubiquitous distribution of pTN3-like integrated elements suggest that a major mechanism of evolution of an entire order of Archaea results from the activity of a selfish mobile genetic element.


Assuntos
Inversão Cromossômica/genética , Evolução Molecular , Integrases/genética , Thermococcales/genética , Genoma Arqueal , Sequências Repetitivas Dispersas/genética , Plasmídeos/genética , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA