Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38475255

RESUMO

Ensuring a secure bond between a framework structure and layering composite resin veneer is essential for a long-lasting dental restoration. A variety of primer systems are available to facilitate the adhesive bonding. Nevertheless, the growing preference for efficiency and simplicity in dentistry has made the one-bottle universal primers a desirable option. This study aims to compare the effectiveness of universal primers on the shear bond strength (SBS) of base metal alloy (BMA) and zirconia to layering composite resin. Each 160 BMA and zirconia 20 × 10 × 5 mm test specimen was fabricated. Eight different primers (SunCera Metal Primer, Metal Primer Z, Reliance Metal Primer, Alloy Primer, MKZ Primer, Monobond Plus, ArtPrime Plus, and Clearfil Ceramic Primer Plus) were applied to 20 specimens in each group. Subsequently, a 5 × 2 mm composite resin build-up was applied. SBS tests were performed after 24 h of water storage and after thermocycling (25,000 cycles, 5-55 °C). On BMA, after water storage for 24 h, the bond strength values ranged from 26.53 ± 3.28 MPa (Metal Primer Z) to 29.72 ± 2.00 MPa (MKZ Primer), while after thermocycling, bond strength values ranged from 25.19 ± 1.73 MPa (MKZ Primer) to 27.69 ± 2.37 MPa (Clearfil Ceramic Primer Plus). On a zirconia base, after 24 h, the bond strengths values ranged from 22.63 ± 2.28 MPa (Reliance Primer) to 29.96 ± 2.37 MPa (MKZ Primer) and from 23.77 ± 3.86 MPa (Metal Primer Z) to 28.88 ± 3.09 MPa (Monobond Plus) after thermocycling. While no significant difference in bond strength was found between the primers on the BMA base, five primer combinations differed significantly from each other on zirconia (p = 0.002-0.043). All primers achieved a bond strength greater than 23 MPa on both framework materials after thermocycling. Thus, all primers tested can be applied to both framework materials with comparable results.

2.
J Prosthet Dent ; 131(3): 458.e1-458.e7, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38182455

RESUMO

STATEMENT OF PROBLEM: Resin-bonded prostheses, including interim resin-bonded prostheses, are effective in preserving tooth structure compared with other types of fixed dental prostheses for the replacement of missing teeth. However, loss of retention remains a notable concern with these types of prostheses. PURPOSE: The purpose of this in vitro study was to investigate the influence of glass-ceramic type, resin type, and surface finish on the shear bond strength (SBS) to the CAD-CAM ceramics used to fabricate interim resin-bonded prostheses. MATERIAL AND METHODS: Eighty 10×2-mm glass-ceramic disks were fabricated by using a diamond saw (IsoMet 1000), 40 from feldspathic porcelain blocks (Vita Mark II) and 40 from lithium disilicate blocks (IPS e.max CAD). Half of the specimens in each group were left with a dull or matte surface finish after cutting, while the other half were glazed with an add-on glaze (VitaAkzento Plus Glaze Spray and IPS e.max CAD Glaze Spray, respectively). The disks were mounted in acrylic resin, and each group was subdivided into 2, with 1 receiving a photopolymerized resin cement (RelyX Veneer) and the other receiving a flowable composite resin (Filtek Supreme Ultimate Flow) to form 2.38×2-mm cylinders. SBS was determined using a universal testing machine (Instron 4411) in accordance with the International Organization for Standardization (ISO) 29022:2013 standard, and failure modes were analyzed by using a stereomicroscope with ×40 magnification. The data were analyzed with a 3-way analysis of variance and Tukey post hoc analysis. The chi-squared test was used to analyze the failure mode (α=.05 for all tests). RESULTS: Ceramic type, resin type, and surface finish significantly impacted SBS (P<.001, P=.003, P<.001, respectively). Lithium disilicate showed higher SBS than feldspathic porcelain, and flowable composite resin exhibited higher SBS than resin cement. Glazed surfaces displayed lower SBS compared with the dull or matte surfaces. The combinations among the 3 materials also impacted SBS (P=.03). In addition, the combinations between ceramic type and surface finish affected SBS (P<.001), regardless of resin cement type. No other combinations affected the SBS (P>.05). The mode of failure was different among the groups (P<.001). In comparison with all other groups, cohesive failures were most prevalent in feldspathic porcelain with a dull or matte surface finish, regardless of the resin type used. CONCLUSIONS: The SBS to glass-ceramics was influenced by ceramic material, resin cement type, and surface finish. Flowable composite resin showed higher SBS than resin cement. A dull or matte surface finish exhibited greater bond strength than a glazed surface. Lithium disilicate had higher SBS than feldspathic porcelain.


Assuntos
Colagem Dentária , Porcelana Dentária , Porcelana Dentária/química , Cimentos de Resina/uso terapêutico , Cimentos de Resina/química , Propriedades de Superfície , Cerâmica/uso terapêutico , Cerâmica/química , Desenho Assistido por Computador
3.
J Esthet Restor Dent ; 34(4): 633-640, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35312154

RESUMO

OBJECTIVE: To compare four different types of monolithic zirconia crowns in terms of survival rate and fracture resistance after thermocycling and/or thermo-mechanical loading in a chewing simulator. METHODS: Partially stabilized zirconia (PSZ) crowns with fiber-reinforced resin die assemblies (n = 80) were fabricated using: multi-yttria-layered 5Y-PSZ/3Y-PSZ, multi-yttria-layered 5Y-PSZ/4Y-PSZ, monolithic 4Y-PSZ, and monolithic 3Y-PSZ as control (n = 20). Half of the samples in each group were subjected to thermo-mechanical loading under 110 N, 1.4 Hz, 1.2 million cycles with simultaneous thermocycling (10,000 cycles, 5-55°C). The other half were subjected to thermocycling alone. The samples were loaded to failure to measure their fracture resistance. The data were analyzed using by two-way ANOVA and Tukey's HSD post-hoc test (α = 0.05). RESULTS: All specimens survived the aging protocols. The yttria content significantly affected the fracture resistance of the crowns (p < 0.0001). The mean fracture resistance, from highest to lowest: 3Y-PSZ, 4Y-PSZ, followed by the two multi-yttria-layered systems. The mean difference between the two multi-yttria-layered systems were not statistically significant (p = 0.98). The mechanical loading protocol did not affect the mean fracture resistance within each group (p = 0.18). CONCLUSIONS: Within each group, there was no difference in fracture resistance after thermocycling alone and thermo-mechanical loading. However, increasing the yttria concentration at the occlusal third of the crown decreased its fracture resistance. CLINICAL SIGNIFICANCE: The term "monolithic zirconia" alone without specifying the actual yttria content is misleading. This term represents different materials with different mechanical properties. The yttria content has an inverse relationship with the fracture resistance of zirconia crowns. The fracture resistance of multi-layer zirconia crowns is determined by the amount of the weaker zirconia phase at the occlusal part of the restoration rather than enforced by the stronger zirconia at the cervical part of the crown.


Assuntos
Mastigação , Zircônio , Coroas , Porcelana Dentária , Falha de Restauração Dentária , Análise do Estresse Dentário , Teste de Materiais , Ítrio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA