Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 437(7061): 995-8, 2005 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-16222295

RESUMO

Stochastic resonance is a counterintuitive concept: the addition of noise to a noisy system induces coherent amplification of its response. First suggested as a mechanism for the cyclic recurrence of ice ages, stochastic resonance has been seen in a wide variety of macroscopic physical systems: bistable ring lasers, superconducting quantum interference devices (SQUIDs), magnetoelastic ribbons and neurophysiological systems such as the receptors in crickets and crayfish. Although fundamentally important as a mechanism of coherent signal amplification, stochastic resonance has yet to be observed in nanoscale systems. Here we report the observation of stochastic resonance in bistable nanomechanical silicon oscillators. Our nanomechanical systems consist of beams that are clamped at each end and driven into transverse oscillation with the use of a radiofrequency source. Modulation of the source induces controllable switching of the beams between two stable, distinct states. We observe that the addition of white noise causes a marked amplification of the signal strength. Stochastic resonance in nanomechanical systems could have a function in the realization of controllable high-speed nanomechanical memory cells, and paves the way for exploring macroscopic quantum coherence and tunnelling.

2.
Phys Rev Lett ; 94(3): 030402, 2005 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-15698242

RESUMO

We report the observation of discrete displacement of nanomechanical oscillators with gigahertz-range resonance frequencies at millikelvin temperatures. The oscillators are nanomachined single-crystal structures of silicon, designed to provide two distinct sets of coupled elements with very low and very high frequencies. With this novel design, femtometer-level displacement of the frequency-determining element is amplified into collective motion of the entire micron-sized structure. The observed discrete response possibly results from energy quantization at the onset of the quantum regime in these macroscopic nanomechanical oscillators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA