Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 10(3)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32110885

RESUMO

Nanostructured electrodes and their flexible integrated systems have great potential for many applications, including electrochemical energy storage, electrocatalysis and solid-state memory devices, given their ability to improve faradaic reaction sites by large surface area. Although many processing techniques have been employed to fabricate nanostructured electrodes onto flexible substrates, these present limitations in terms of achieving flexible electrodes with high mechanical stability. In this study, the adhesion, mechanical properties and flexibility of TiN nanotube arrays on a Pt substrate were improved using a Ti interlayer. Highly ordered and well-aligned TiN nanotube arrays were fabricated on a Pt substrate using a template-assisted method with an anodic aluminum oxide (AAO) template and atomic layer deposition (ALD) system. We show that with the use of a Ti interlayer between the TiN nanotube arrays and Pt substrate, the TiN nanotube arrays could perfectly attach to the Pt substrate without delamination and faceted phenomena. Furthermore, the I-V curve measurements confirmed that the electric contact between the TiN nanotube arrays and substrate for use as an electrode was excellent, and its flexibility was also good for use in flexible electronic devices. Future efforts will be directed toward the fabrication of embedded electrodes in flexible plastic substrates by employing the concepts demonstrated in this study.

2.
ACS Appl Mater Interfaces ; 11(41): 37586-37594, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31580636

RESUMO

Cadmium sulfide (CdS) is a semiconducting absorber for photoelectrochemical (PEC) hydrogen production with suitable electronic band structures. However, it suffers from severe photocorrosion and rapid charge recombination during the desired PEC reactions. Herein, we describe the identification of the optimal junction thickness of CdS/MoS2 core/sheath heterojunction nanostructures by employing atomic layer deposition (ALD) techniques. ALD-grown MoS2 sheath layers with different thicknesses were realized on single-crystalline CdS nanorod (NR) arrays on transparent conducting oxide substrates. We further monitored the resulting solar H2 evolution performance with our heterojunction photoanodes. The results showed that the junction thickness of MoS2 plays a key role in the reduction of photocorrosion and the enhanced photocurrent density by optimizing the charge separation. A better saturation photocurrent (∼46%) was obtained with the 7 nm-thick MoS2@CdS NRs than that with the bare CdS NRs. Moreover, the external quantum efficiency was increased twofold over that of the pristine CdS NRs. The ALD-grown MoS2@CdS heterojunction structures provides an efficient and versatile platform for hydrogen production when combining ALD-grown MoS2 with ideal semiconducting absorbers.

3.
ACS Appl Mater Interfaces ; 10(24): 20929-20937, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29883084

RESUMO

Single-crystalline gold nanowires (Au NWs) are directly synthesized by the photocatalytic reduction of an aqueous HAuCl4 solution inside high-aspect-ratio TiO2 nanotubes (NTs). Crystalline TiO2 (anatase) NTs are prepared by the template-assisted atomic layer deposition technique with a subsequent annealing. Under the irradiation of ultraviolet light, photoexcited electrons are formed on the surfaces of TiO2 NTs and could reduce Au ions to create nuclei without using any surfactant, reducing agent, and/or seed. Once nucleation occurred, high-aspect-ratio Au NWs are grown inside the TiO2 NTs in a diffusion-controlled manner. As the solution pH increased, the nucleation/growth rate decreased and twin-free (or not observed), single-crystalline Au NWs are formed. At a pH above 6, the nucleation/growth rates increased and Au nanoparticles are observed both inside and outside of the TiO2 NTs. The confined nanoscale geometries of the interior of the TiO2 NTs are found to play a key role in the controlled diffusion of Au species and in determining the crystal morphology of the resulting Au NWs.

4.
Adv Mater ; : e1801010, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29786887

RESUMO

Despite the high power conversion efficiency (PCE) of perovskite solar cells (PSCs), poor long-term stability is one of the main obstacles preventing their commercialization. Several approaches to enhance the stability of PSCs have been proposed. However, an accelerating stability test of PSCs at high temperature under the operating conditions in ambient air remains still to be demonstrated. Herein, interface-engineered stable PSCs with inorganic charge-transport layers are shown. The highly conductive Al-doped ZnO films act as efficient electron-transporting layers as well as dense passivation layers. This layer prevents underneath perovskite from moisture contact, evaporation of components, and reaction with a metal electrode. Finally, inverted-type PSCs with inorganic charge-transport layers exhibit a PCE of 18.45% and retain 86.7% of the initial efficiency for 500 h under continuous 1 Sun illumination at 85 °C in ambient air with electrical biases (at maximum power point tracking).

5.
Adv Mater ; 30(16): e1706261, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29513390

RESUMO

Gold is known as the most noblest metal with only face-centered cubic (fcc) structure in ambient conditions. Here, stable hexagonal non-close-packed (ncp) gold nanowires (NWs), having a diameter of about 50 nm and aspect ratios of well over 400, are reported. Au NWs are grown in the confined system of nanotubular TiO2 arrays via photoelectrochemical reduction of HAuCl4 precursors. Some of the resulting Au NWs are proved to have sixfold rotational symmetry, observed by transmission electron microscopy tilting experiments. This new polymorph is identified as a hexagonal ncp-structure with lattice parameters of a = 2.884 Å and c = 7.150 Å, showing quite a large interplanar spacing (c/a ≈ 2.48). That is, Au atoms are close-packed along the ab plane, but each plane is not closely stacked along the c axis like in graphite. The structure is usually expected to be unstable, but the present ncp-2H gold is stable under ambient conditions and intense electron beam irradiation, and shows thermal stability up to 400 °C. Moreover, the resulting physical properties as a result of the corresponding change in electronic structures are investigated by comparing the optical properties of fcc and ncp-2H Au NWs.

6.
ACS Appl Mater Interfaces ; 10(15): 12807-12815, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29578327

RESUMO

We describe the direct preparation of crystalline Ni3S2 thin films via atomic layer deposition (ALD) techniques at temperatures as low as 250 °C without postthermal treatments. A new ALD chemistry is proposed using bis(1-dimethylamino-2-methyl-2-butoxy) nickel(II) [Ni(dmamb)2] and H2S as precursors. Homogeneous and conformal depositions of Ni3S2 films were achieved on 4 in. wafers (both metal and oxide substrates, including Au and SiO2). The resulting crystalline Ni3S2 layers exhibited highly efficient and stable performance as electrocatalysts for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in alkaline solutions, with a low overpotential of 300 mV and a high turnover frequency for HER and an overpotential of 400 mV for OER (at a current density of 10 mA/cm2). Using our Ni3S2 films as both the cathode and the anode, two-electrode full-cell electrolyzers were constructed, which showed stable operation for 100 h at a current density of 10 mA/cm2. The proposed ALD electrocatalysts on planar surfaces exhibited the best performance among Ni3S2 materials for overall water splitting recorded to date.

7.
Nano Converg ; 4(1): 31, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29238653

RESUMO

We describe a fabrication strategy for preparing yttria-stabilized zirconia nanotube (YSZ-NT) arrays embedded in porous alumina membranes by means of template-directed atomic layer deposition (ALD) technique. The individual YSZ-NTs have a high aspect-ratio of well over 120, about ~ 110 nm in diameter, and ~ 14 µm in length. Interfacing the tube arrays with porous Pt was also introduced on the basis of partial etching technique in order to construct Pt/YSZ-NTs/Pt membrane electrode assembly (MEA) structures. The resulting YSZ-NTs MEAs show a 7 mm in diameter with a roughness factor of ~ 2. Area specific resistance was measured up to 1.84 Ω cm2 at 400 °C using H2 as fuel.

8.
Sci Adv ; 3(3): e1602215, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28435863

RESUMO

We describe the spontaneous formation of composite chalcogenide materials that consist of two-dimensional (2D) materials dispersed in bulk and their unusual charge transport properties for application in hydrogen evolution reactions (HERs). When MoS2 as a representative 2D material is deposited on transition metals (such as Cu) in a controlled manner, the sulfidation reactions also occur with the metal. This process results in remarkably unique structures, that is, bulk layered heterojunctions (BLHJs) of Cu-Mo-S that contain MoS2 flakes inside, which are uniformly dispersed in the Cu2S matrix. The resulting structures were expected to induce asymmetric charge transfer via layered frameworks and tested as electrocatalysts for HERs. Upon suitable thermal treatments, the BLHJ surfaces exhibited the efficient HER performance of approximately 10 mA/cm2 at a potential of -0.1 V versus a reversible hydrogen electrode. The Tafel slope was approximately 30 to 40 mV per decade. The present strategy was further generalized by demonstrating the formation of BLHJs on other transition metals, such as Ni. The resulting BLHJs of Ni-Mo-S also showed the remarkable HER performance and the stable operation over 10 days without using Pt counter electrodes by eliminating any possible issues on the Pt contamination.

9.
Nanoscale ; 8(22): 11403-12, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27216291

RESUMO

NiO is a wide band gap p-type oxide semiconductor and has potential for applications in solar energy conversion as a hole-transporting layer (HTL). It also has good optical transparency and high chemical stability, and the capability of aligning the band edges to the perovskite (CH3NH3PbI3) layers. Ultra-thin and un-doped NiO films with much less absorption loss were prepared by atomic layer deposition (ALD) with highly precise control over thickness without any pinholes. Thin enough (5-7.5 nm in thickness) NiO films with the thickness of few time the Debye length (LD = 1-2 nm for NiO) show enough conductivities achieved by overlapping space charge regions. The inverted planar perovskite solar cells with NiO films as HTLs exhibited the highest energy conversion efficiency of 16.40% with high open circuit voltage (1.04 V) and fill factor (0.72) with negligible current-voltage hysteresis.

10.
ChemSusChem ; 8(14): 2363-71, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-25802052

RESUMO

Titanium dioxide (TiO2 ), tin dioxide (SnO2 ), and heterostructured TiO2 /SnO2 nanotube (NT) arrays have been fabricated by template-assisted atomic-layer deposition (ALD) for use as anodes in a lithium-ion battery (LIB). TiO2 NT arrays with 8 nm thick walls showed higher capacity (≈250 mA h g(-1) after the 50th cycle at a rate of C/10) than the typical theoretical capacity of bulk TiO2 and a radically improved capacity retention property upon cycling. SnO2 NT arrays with different wall thicknesses (8, 10, 13, and 20 nm) were also fabricated and their electrochemical performances were measured. All of the SnO2 NT arrays showed substantially higher initial irreversible capacity and higher reversible capacity than those of bulk TiO2 . Thinner walls of the SnO2 NTs result in better capacity retention. Heterotubular structures of TiO2 (5 nm)/SnO2 (10 nm)/TiO2 (5 nm) were successfully fabricated, and displayed a sufficiently high capacity (≈300 mA h g(-1) after 50 cycles) with exceptionally improved cycling performance up to the 50th cycle.


Assuntos
Fontes de Energia Elétrica , Lítio/química , Nanotubos/química , Compostos de Estanho/química , Titânio/química , Eletrodos , Modelos Moleculares , Conformação Molecular , Propriedades de Superfície
11.
Sci Rep ; 5: 9339, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25797616

RESUMO

Rational synthesis of coordinated spherical colloids is reported by site-selective growth of secondary hemispherical patches on primary spherical particles with quasi-defined coordination numbers and positions. We clarify the importance of mass transport phenomena on the site-specific secondary nucleation/growth in nanoparticulate colloidal systems. By comparing ultrasonic and conventional agitation during patch growth, we found that enhanced mass transfer is the key to controlled, homogeneous transport of the molecular precursors in a solvent onto the nanoparticles. With chemically defined nucleation sites, the surfaces of spherical silica particles were modified for use as a new kind of colloid with patches at desired coordination positions. Our observations represent a significant breakthrough in colloidal chemistry and self-assembly.

12.
Nano Lett ; 14(8): 4413-7, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25002075

RESUMO

Both enhancing the excitons' lifetime and ingeniously controlling the spatial charge transfer are the key to the realization of efficiently photocatalytic and artificially photosynthetic devices. Nanostructured metal/metal-oxide interfaces often exhibit improved energy conversion efficiency. Understanding the surface potential changes of nano-objects under light illumination is crucial in photoelectrochemical cells. Under ultraviolet (UV) illumination, here, we directly observed the charge separation phenomena at the Au-nanoparticle/TiO2-nanotube interfaces by using Kelvin probe force microscopy. The surface potential maps of TiO2 nanotubes with and without Au nanoparticles were compared on the effect of different substrates. We observed that in a steady state, approximately 0.3 electron per Au particle of about 4 nm in diameter is effectively charged and consequently screens the surface potential of the underlying TiO2 nanotubes. Our observations should help design improved photoelectrochemical devices for energy conversion applications.

13.
Nanoscale ; 5(13): 5825-32, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23695271

RESUMO

An innovative atomic layer deposition (ALD) concept, with which nanostructures of water condensates with high aspect ratio at equilibrium in cylindrical nanopores can be transformed uniformly into silica (SiO2) at near room temperature and ambient pressure, has been demonstrated for the first time. As a challenging model system, we first prove the conversion of cylindrical water condensates in porous alumina membranes to silica nanotubes (NTs) by introducing SiCl4 as a metal reactant without involving any catalytic reaction. Surprisingly, the water NTs reproducibly transformed into silica NTs, where the wall thickness of the silica NTs deposited per cycle was found to be limited by the amount of condensed water, and it was on the orders of ten nanometers per cycle (i.e., over 50 times faster than that of conventional ALD). More remarkably, the reactions only took place for 10-20 minutes or less without vacuum-related equipment. The thickness of initially adsorbed water layers in cylindrical nanopores was indirectly estimated from the thickness of formed SiO2 layers. With systematic experimental designs, we tackle the classical Kelvin equation in the nanosized pores, and the role of van der Waals forces in the nanoscale wetting phenomena, which is a long-standing issue lacking experimental insight. Moreover, we show that the present strategy is likely generalized to other oxide systems such as TiO2. Our approach opens up a new avenue for ultra-simple preparation of porous oxides and allows for the room temperature formation of dielectric layers toward organic electronic and photovoltaic applications.

14.
Chem Commun (Camb) ; 47(18): 5145-7, 2011 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-21423991

RESUMO

We describe a procedure for one-step patterning and transfer of self-assembled organic monolayers (SAMs) on SiO(2)/Si substrates. This procedure was inspired from an idea of pattern formation at contact area, which realizes high patterning fidelity, and enables a universal approach for the micro/nanometre scale patterning of SAMs.

15.
ACS Appl Mater Interfaces ; 2(6): 1581-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20527769

RESUMO

Surface decoration strategy for one-dimensional nanostructures will improve their electrical, optical, mechanical, and electrochemical performances dramatically. Heterogeneous growth/deposition on surfaces, however, may create undesired junction interfaces in the system. Here we report a procedure during which amorphous titania nanotubes are readily self-branched with crystalline titanate nanorods at room temperature. The starting amorphous titania nanotubes were prepared by low-temperature atomic layer deposition combined with the template-directed approach. We routinely observed the self-branching phenomenon of crystalline titanate nanorods with a few nanometers in diameter onto the surfaces of the amorphous titania nanotubes in mild alkali solutions. The resulting structures were analyzed by field-emission scanning electron microscopy, high-resolution transmission electron microscopy, and electron energy loss spectroscopy. The reactivity of the hierarchical titania nanotube arrays was observed to be improved as a Li secondary battery electrode. Upon complete consumption of the amorphous body of titania nanotubes, in addition, titanate nanosheets/layers consisting of single TiO(2) layers with unit-cell thickness were obtained, elucidating the formation mechanism of layered titanate materials by alkali treatment.


Assuntos
Nanotubos/química , Titânio/química , Cristalização , Fontes de Energia Elétrica , Eletroquímica/métodos , Lítio/química , Teste de Materiais , Microscopia Eletrônica de Varredura/métodos , Microscopia Eletrônica de Transmissão/métodos , Nanoestruturas/química , Nanotecnologia/métodos , Temperatura
19.
J Am Chem Soc ; 129(46): 14232-9, 2007 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-17963380

RESUMO

We report a new fabrication method of asymmetric colloidal clusters by using contact area lithography with site-selective growth. Nanometric surface patterns (approximately 44, 60, and 81 nm in diameter) were prepared by coating surfaces with self-assembled monolayers (SAMs; octadecyltrichlorosilane (OTS) in this study) except the contact area either between colloidal particles or between colloids and substrate. Nanoscale site-specific heterogeneous nucleation and growth of oxide materials of titanium were studied using the patterns of OTS-SAMs onto the either flat or curved surfaces of SiO2. Experimental results suggest that a combination of the large difference in the surface energy between the growing and surrounding surfaces and the diffusion-controlled growth leads to complete nanoscale site specificity. We also fabricated superstructrures of silica spheres with hemispheres of titania (<20 nm in dimension) on their surfaces and discussed the optical properties of colloidal films consisting of the monodisperse asymmetric colloidal clusters in terms of photonic band gap.

20.
Ultramicroscopy ; 100(3-4): 339-46, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15231327

RESUMO

Lead zirconate titanate (PZT) thin films were prepared by a sol-gel process on platinized Si substrate. Their microstructure and surface morphology were characterized by XRD and Scanninn Force Microscopy. Phase transformation of the prepared PZT films from pyrochlore to ferroelectric was observed by XRD and PFM (piezoresponse force microscopy), respectively. Self-assembling nano-structured ferroelectric phases are fabricated by solution deposition technique followed by the controlling kinetics of the transformation. Complex structures of ferroelectric domains in the isolated ferroelectric phases were found in the furnace annealed PZT films in the temperature range of 400-500 degrees C. Single ferroelectric domain structure in the isolated ferroelectric phases could be found in thinner PZT films and used to study the size effect of laterally confined ferroelectric domains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA