Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 18(1): 23-28, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36577852

RESUMO

The interaction between distinct excitations in solids is of both fundamental interest and technological importance. One such interaction is the coupling between an exciton, a Coulomb bound electron-hole pair, and a magnon, a collective spin excitation. The recent emergence of van der Waals magnetic semiconductors1 provides a platform to explore these exciton-magnon interactions and their fundamental properties, such as strong correlation2, as well as their photospintronic and quantum transduction3 applications. Here we demonstrate the precise control of coherent exciton-magnon interactions in the layered magnetic semiconductor CrSBr. We varied the direction of an applied magnetic field relative to the crystal axes, and thus the rotational symmetry of the magnetic system4. Thereby, we tuned not only the exciton coupling to the bright magnon, but also to an optically dark mode via magnon-magnon hybridization. We further modulated the exciton-magnon coupling and the associated magnon dispersion curves through the application of uniaxial strain. At a critical strain, a dispersionless dark magnon band emerged. Our results demonstrate an unprecedented level of control of the opto-mechanical-magnonic coupling, and a step towards the predictable and controllable implementation of hybrid quantum magnonics5-11.

2.
Nature ; 609(7926): 282-286, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36071189

RESUMO

The recent discoveries of two-dimensional (2D) magnets1-6 and their stacking into van der Waals structures7-11 have expanded the horizon of 2D phenomena. One exciting application is to exploit coherent magnons12 as energy-efficient information carriers in spintronics and magnonics13,14 or as interconnects in hybrid quantum systems15-17. A particular opportunity arises when a 2D magnet is also a semiconductor, as reported recently for CrSBr (refs. 18-20) and NiPS3 (refs. 21-23) that feature both tightly bound excitons with a large oscillator strength and potentially long-lived coherent magnons owing to the bandgap and spatial confinement. Although magnons and excitons are energetically mismatched by orders of magnitude, their coupling can lead to efficient optical access to spin information. Here we report strong magnon-exciton coupling in the 2D A-type antiferromagnetic semiconductor CrSBr. Coherent magnons launched by above-gap excitation modulate the exciton energies. Time-resolved exciton sensing reveals magnons that can coherently travel beyond seven micrometres, with a coherence time of above five nanoseconds. We observe these exciton-coupled coherent magnons in both even and odd numbers of layers, with and without compensated magnetization, down to the bilayer limit. Given the versatility of van der Waals heterostructures, these coherent 2D magnons may be a basis for optically accessible spintronics, magnonics and quantum interconnects.

3.
J Phys Chem B ; 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34133180

RESUMO

The excited-state dynamics of a spiro-fused terrylene-3,4:11,12-bis(dicarboximide) (TDI) dimer (sTDI2) in toluene and 2-methyltetrahydrofuran (mTHF) were investigated as a function of temperature using femtosecond- and nanosecond-transient absorption spectroscopy, as well as two-dimensional electronic spectroscopy. The spiro conjugation and the corresponding geometry of this compound guarantee a short intermonomer distance along with a partial orbital overlap between the orthogonal TDI π-electron systems, providing electronic coupling between the TDIs. Photoexcitation of sTDI2 in toluene, a low dielectric solvent, at 295 K, results in the ultrafast formation of a state composed of a coherent mixture of singlet 1(S1S0), multiexciton 1(T1T1), and charge-transfer (CT) electronic characters. This mixed species decays to decorrelated triplet states on the nanosecond timescale, completing the process of intramolecular singlet fission (SF) in sTDI2. Upon decreasing the temperature from 295 to 200 K, the contribution of the 1(T1T1) state to the mixed species decreases concurrently with an increase in the CT state character. We attribute this behavior to the variation in the vibrational energy level alignment between the states comprising the mixture due to changes in the temperature and hence the local dielectric environment. In contrast, photoexcitation of sTDI2 in more polar mTHF at 295 K results in the formation of a mixed singlet and CT state before undergoing symmetry-breaking charge separation, owing to the increased stabilization of the CT state in the medium. However, in glassy mTHF at 85 K, photoexcited sTDI2 exhibits discernible multiexciton character, comparable to that observed in toluene at 200 K, which we rationalize by the similarity of the dielectric constants under these two sets of conditions. These observations of mixed states of varying diabatic contributions over the range of experimental conditions show that the temperature and the static dielectric constant can directly control the composition of the electronically mixed excited state of sTDI2 and thus the fate of the SF process.

4.
J Chem Phys ; 153(24): 244306, 2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33380082

RESUMO

We have studied two regioisomeric terrylenediimide (TDI) dimers in which the 1-positions of two TDIs are linked via 1,3- or 1,4-phenylene spacers, mTDI2 and pTDI, respectively. The nature and the dynamics of the multiexciton state are tuned by altering the through-bond electronic couplings in the ground and excited states and by changing the solvent environment. Our results show that controlling the electronic coupling between the two chromophores by an appropriate choice of linker can result in independent triplet state formation, even though the initial correlated triplet pair state is confined to a dimer. Moreover, even in polar solvents, if the electronic coupling is strong, the correlated triplet pair state is observed prior to symmetry-breaking charge separation. These results point out the close relationship between the singlet, correlated triplet pair, and charge transfer states in molecular dimers.

5.
J Phys Chem A ; 124(41): 8478-8487, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32975426

RESUMO

Photoexcitation of molecular chromophore aggregates can form excimer states that play a significant role in photophysical processes such as charge and energy transfer as well as singlet fission. An excimer state is commonly defined as a superposition of Frenkel exciton and charge transfer states. In this work, we investigate the dynamics of excimer formation and decay in π-stacked 9,10-bis(phenylethynyl)anthracene (BPEA) covalent dimers appended to a xanthene spacer, where the electronic coupling between the two BPEA molecules is adjusted by changing their longitudinal molecular slip distances. Using exciton coupling calculations, we quantify the relative contributions of Frenkel excitons and charge transfer states and find that there is an upper and lower threshold of the charge transfer contribution for efficient excimer formation to occur. Knowing these thresholds can aid the design of molecular aggregates that optimize singlet fission.

6.
Chemistry ; 26(37): 8262-8266, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31968144

RESUMO

Free base, zinc and palladium π-extended porphyrins containing fused naphthalenediamide units were employed as photosensitizers in antimicrobial photodynamic therapy (aPDT). Their efficacy, assessed by photophysical and in vitro photobiological studies on Gram-positive bacteria, was found to depend on metal coordination, showing a dramatic enhancement of photosensitizing activity for the palladium complex.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Positivas/química , Metaloporfirinas/química , Porfirinas/química , Zinco/química , Antibacterianos/química , Humanos , Metaloporfirinas/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes , Porfirinas/farmacologia
7.
J Am Chem Soc ; 141(47): 18727-18739, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31580664

RESUMO

A series of donor-acceptor (D-A) naphthalene-viologen-based cyclophanes of different shapes, sizes, and symmetries have been synthesized and characterized. Solution optical studies on these cyclophanes reveal the existence of photoinduced intramolecular charge transfer (CT) at 465 nm from naphthalene (D) to viologen (A) units, resulting in a conformational change in the viologen units and the emergence of an emission at 540 nm. The D-A cyclophanes with box-like and hexagon-like shapes offer an opportunity to control the arrangement within 2D layers where D-A interactions direct the superstructures. While a box-like 2,6-disubstituted naphthalene-based tetracationic cyclophane does not form square tiling patterns, a truncated hexagon-like congener self-assembles to form a hexagonal superstructure which, in turn, adopts a hexagonal tiling pattern. Tessellation of the more rigid and highly symmetrical 2,7-disubstituted naphthalene-based cyclophanes leads to the formation of 2D square and honeycomb tiling patterns with the box-like and hexagon-like cyclophanes, respectively. Co-crystallization of the box-like cyclophanes with tetrathiafulvalene (TTF) results in the formation of D-A CT interactions between TTF and viologen units, leading to tubular superstructures. Co-crystallization of the hexagon-like cyclophane with TTF generates well-ordered and uniform tubular superstructures in which the TTF-viologen CT interactions and naphthalene-naphthalene [π···π] interactions propagate with 2D topology. In the solid state, the TTF-cyclophane co-crystals are paramagnetic and display dual intra- and intermolecular CT behavior at ∼470 and ∼1000 nm, respectively, offering multi-responsive materials with potential pathways for electron transport.

8.
J Chem Phys ; 151(4): 044501, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31370542

RESUMO

Singlet fission (SF) converts a singlet exciton into two triplet excitons in two or more electronically coupled organic chromophores, which may then be used to increase solar cell efficiency. Many known SF chromophores are unsuitable for device applications due to chemical instability or low triplet state energies. The results described here show that efficient SF occurs in derivatives of 9,10-bis(phenylethynyl)anthracene (BPEA), which is a highly robust and tunable chromophore. Fluoro and methoxy substituents at the 4- and 4'-positions of the BPEA phenyl groups control the intermolecular packing in the crystal structure, which alters the interchromophore electronic coupling, while also changing the SF energetics. The lowest excited singlet state (S1) energy of 4,4'-difluoro-BPEA is higher than that of BPEA so that the increased thermodynamic favorability of SF results in a (16 ± 2 ps)-1 SF rate and a 180% ± 16% triplet yield, which is about an order of magnitude faster than BPEA with a comparable triplet yield. By contrast, 4-fluoro-4'-methoxy-BPEA and 4,4'-dimethoxy-BPEA have slower SF rates, (90 ± 20 ps)-1 and (120 ± 10 ps)-1, and lower triplet yields, (110 ± 4)% and (168 ± 7)%, respectively, than 4,4'-difluoro-BPEA. These differences are attributed to changes in the crystal structure controlling interchromophore electronic coupling as well as SF energetics in these polycrystalline solids.

9.
Proc Natl Acad Sci U S A ; 116(17): 8178-8183, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30948629

RESUMO

Singlet fission (SF) is a photophysical process in which one of two adjacent organic molecules absorbs a single photon, resulting in rapid formation of a correlated triplet pair (T1T1) state whose spin dynamics influence the successful generation of uncorrelated triplets (T1). Femtosecond transient visible and near-infrared absorption spectroscopy of a linear terrylene-3,4:11,12-bis(dicarboximide) dimer (TDI2), in which the two TDI molecules are directly linked at one of their imide positions, reveals ultrafast formation of the (T1T1) state. The spin dynamics of the (T1T1) state and the processes leading to uncoupled triplets (T1) were studied at room temperature for TDI2 aligned in 4-cyano-4'-pentylbiphenyl (5CB), a nematic liquid crystal. Time-resolved electron paramagnetic resonance spectroscopy shows that the (T1T1) state has mixed 5(T1T1) and 3(T1T1) character at room temperature. This mixing is magnetic field dependent, resulting in a maximum triplet yield at ∼200 mT. The accessibility of the 3(T1T1) state opens a pathway for triplet-triplet annihilation that produces a single uncorrelated T1 state. The presence of the 5(T1T1) state at room temperature and its relationship with the 1(T1T1) and 3(T1T1) states emphasize that understanding the relationship among different (T1T1) spin states is critical for ensuring high-yield T1 formation from singlet fission.

10.
Chem Sci ; 11(3): 812-825, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34123057

RESUMO

A modular strategy has been employed to develop a new class of fluorescent molecules, which generates discrete, dimeric stacked fluorophores upon complexation with multiple cucurbit[8]uril macrocycles. The multiple constraints result in a "static" complex (remaining as a single entity for more than 30 ms) and facilitate fluorophore coupling in the ground state, showing a significant bathochromic shift in absorption and emission. This modular design is surprisingly applicable and flexible and has been validated through an investigation of nine different fluorophore cores ranging in size, shape, and geometric variation of their clamping modules. All fluorescent dimers evaluated can be photo-excited to atypical excimer-like states with elongated excited lifetimes (up to 37 ns) and substantially high quantum yields (up to 1). This strategy offers a straightforward preparation of discrete fluorophore dimers, providing promising model systems with explicitly stable dimeric structures and tunable photophysical features, which can be utilized to study various intermolecular processes.

11.
J Am Chem Soc ; 140(43): 14474-14480, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30289699

RESUMO

[4]Chrysaorene, a fully conjugated carbocyclic coronoid, is shown to be a low-bandgap π-conjugated system with a distinct open-shell character. The system shows good chemical stability and can be oxidized to well-defined radical cation and dication states. The cavity of [4]chrysaorene acts as an anion receptor toward halide ions with a particular selectivity toward iodides ( Ka = 207 ± 6 M-1). The interplay between anion binding and redox chemistry is demonstrated using a 1H NMR analysis in solution. In particular, a well-resolved, paramagnetically shifted spectrum of the [4]chrysaorene radical cation is observed, providing evidence for the inner binding of the iodide. The radical cation-iodide adduct can be generated in thin solid films of [4] chrysaorene by simple exposure to diiodine vapor.

12.
J Am Chem Soc ; 140(45): 15140-15144, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30372052

RESUMO

Singlet fission (SF) in two or more electronically coupled organic chromophores converts a high-energy singlet exciton into two low-energy triplet excitons, which can be used to increase solar cell efficiency. Many known SF chromophores are unsuitable for device applications due to chemical instability and low triplet state energies. The results described here show that efficient SF occurs in polycrystalline thin films of 9,10-bis(phenylethynyl)anthracene (BPEA), a commercial dye that has singlet and triplet energies of 2.40 and 1.11 eV, respectively, in the solid state. BPEA crystallizes into two polymorphs with space groups C2/ c and Pbcn, which undergo SF with kSFA = (109 ± 4 ps)-1 and kSFB = (490 ± 10 ps)-1, respectively. The high triplet energy and efficient SF evidenced from the 180 ± 20% triplet yield make BPEA a promising candidate for enhancing solar cell performance.

13.
J Am Chem Soc ; 140(29): 9184-9192, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-29949371

RESUMO

Singlet fission (SF) is a spin-allowed process that involves absorption of a photon by two electronically interacting chromophores to produce a singlet exciton state, 1(S1S0), followed by rapid formation of two triplet excitons if the singlet exciton energy is about twice that of the triplet exciton. The initial formation of the multiexciton correlated triplet pair state, 1(T1T1), is thought to involve the agency of charge transfer (CT) states. The dynamics of these electronic states were studied in a covalent slip-stacked terrylene-3,4:11,12-bis(dicarboximide) (TDI) dimer in which the conformation of two TDI molecules is determined by a xanthene spacer (XanTDI2). Femtosecond mid-infrared (fsIR) spectroscopy shows that the multiexciton 1(T1T1) state has absorptions characteristic of the T1 state in the carbonyl stretch region of the IR spectrum, in addition to IR absorptions specific to the CT state in the C═C stretch region. The simultaneous presence of CT and triplet state features in both high dielectric constant CH2Cl2 and low dielectric constant 1,4-dioxane throughout the multiexciton state lifetime suggests that this state has both CT and triplet character.

14.
ACS Appl Mater Interfaces ; 8(16): 10098-103, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27071544

RESUMO

Preventing the permeation of reactive molecules into electronic devices or photovoltaic modules is of great importance to ensure their life span and reliability. This work is focused on the formation of highly functioning barrier films based on nanocrystals (NCs) of a water-scavenging metal-organic framework (MOF) and a hydrophobic cyclic olefin copolymer (COC) to overcome the current limitations. Water vapor transmission rates (WVTR) of the films reveal a 10-fold enhancement in the WVTR compared to the substrate while maintaining outstanding transparency over most of the visible and solar spectrum, a necessary condition for integration with optoelectronic devices.


Assuntos
Polímeros/química , Vapor , Metais , Reprodutibilidade dos Testes , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA