Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674956

RESUMO

In contrast to bacteria, microbiome analyses often neglect archaea, but also eukaryotes. This is partly because they are difficult to culture due to their demanding growth requirements, or some even have to be classified as uncultured microorganisms. Consequently, little is known about the relevance of archaea in human health and diseases. Contemporary broad availability and spread of next generation sequencing techniques now enable a stronger focus on such microorganisms, whose cultivation is difficult. However, due to the enormous evolutionary distances between bacteria, archaea and eukaryotes, the implementation of sequencing strategies for smaller laboratory scales needs to be refined to achieve as a holistic view on the microbiome as possible. Here, we present a technical approach that enables simultaneous analyses of archaeal, bacterial and eukaryotic microbial communities to study their roles in development and courses of respiratory disorders. We thus applied combinatorial 16S-/18S-rDNA sequencing strategies for sequencing-library preparation. Considering the lower total microbiota density of airway surfaces, when compared with gut microbiota, we optimized the DNA purification workflow from nasopharyngeal swab specimens. As a result, we provide a protocol that allows the efficient combination of bacterial, archaeal, and eukaryotic libraries for nanopore-sequencing using Oxford Nanopore Technologies MinION devices and subsequent phylogenetic analyses. In a pilot study, this workflow allowed the identification of some environmental archaea, which were not correlated with airway microbial communities before. Moreover, we assessed the protocol's broader applicability using a set of human stool samples. We conclude that the proposed protocol provides a versatile and adaptable tool for combinatorial studies on bacterial, archaeal, and eukaryotic microbiomes on a small laboratory scale.


Assuntos
Microbiota , Nanoporos , Humanos , Archaea/genética , Eucariotos/genética , Filogenia , DNA Ribossômico , Projetos Piloto , Microbiota/genética , Bactérias , Nasofaringe , RNA Ribossômico 16S/genética
2.
Cells ; 11(8)2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35455967

RESUMO

Bacteria, as well as eukaryotes, principally fungi, of the upper respiratory tract play key roles in the etiopathogenesis of respiratory diseases, whereas the potential role of archaea remains poorly understood. In this review, we discuss the contribution of all three domains of cellular life to human naso- and oropharyngeal microbiomes, i.e., bacterial microbiota, eukaryotes (mostly fungi), as well as the archaeome and their relation to respiratory and atopic disorders in infancy and adolescence. With this review, we aim to summarize state-of-the-art contributions to the field published in the last decade. In particular, we intend to build bridges between basic and clinical science.


Assuntos
Asma , Microbiota , Micobioma , Archaea , Bactérias , Criança , Eucariotos , Fungos , Humanos
3.
Viruses ; 14(3)2022 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-35336898

RESUMO

Respiratory viruses play an important role in asthma exacerbation, and early exposure can be involved in recurrent bronchitis and the development of asthma. The exact mechanism is not fully clarified, and pathogen-to-host interaction studies are warranted to identify biomarkers of exacerbation in the early phase. Only a limited number of international exacerbation cohorts were studied. Here, we have established a local pediatric exacerbation study in Germany consisting of children with asthma or chronic, recurrent bronchitis and analyzed the viriome within the nasopharyngeal swab specimens derived from the entire cohort (n = 141). Interestingly, 41% of exacerbated children had a positive test result for human rhinovirus (HRV)/human enterovirus (HEV), and 14% were positive for respiratory syncytial virus (RSV). HRV was particularly prevalent in asthmatics (56%), wheezers (50%), and atopic (66%) patients. Lymphocytes were decreased in asthmatics and in HRV-infected subjects, and patients allergic to house dust mites were more susceptible to HRV infection. Our study thus confirms HRV infection as a strong 'biomarker' of exacerbated asthma. Further longitudinal studies will show the clinical progress of those children with a history of an RSV or HRV infection. Vaccination strategies and novel treatment guidelines against HRV are urgently needed to protect those high-risk children from a serious course of disease.


Assuntos
Asma , Bronquite , Infecções por Enterovirus , Enterovirus , Infecções por Picornaviridae , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Viroses , Vírus , Asma/epidemiologia , Biomarcadores , Criança , Humanos , Lactente , Infecções Respiratórias/epidemiologia , Rhinovirus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA