Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Heliyon ; 10(9): e30490, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38726110

RESUMO

The Contamination Sanitization Inspection and Disinfection (CSI-D) device is a handheld fluorescence-based imaging system designed to disinfect food contact surfaces using ultraviolet-C (UVC) illumination. This study aimed to determine the optimal CSI-D parameters (i.e., UVC exposure time and intensity) for the inactivation of the following foodborne bacteria plated on non-selective media: generic Escherichia coli (indicator organism) and the pathogens enterohemorrhagic E. coli, enterotoxigenic E. coli, Salmonella enterica, and Listeria monocytogenes. Each bacterial strain was spread-plated on non-selective agar and exposed to high-intensity (10 mW/cm2) or low-intensity (5 mW/cm2) UVC for 1-5 s. Control plates were not exposed to UVC. The plates were incubated overnight at 37 °C and then enumerated. Three trials for each bacterial strain were conducted. Statistical analysis was carried out to determine if there were significant differences in bacterial growth between UVC intensities and exposure times. Overall, exposure to low or high intensity for 3-5 s resulted in consistent inhibition of bacterial growth, with reductions of 99.9-100 % for E. coli, 96.8-100 % for S. enterica, and 99.2-100 % for L. monocytogenes. The 1 s exposure time showed inconsistent results, with a 66.0-100 % reduction in growth depending on the intensity and bacterial strain. When the results for all strains within each species were combined, the 3-5 s exposure times showed significantly greater (p < 0.05) growth inhibition than the 1 s exposure time. However, there were no significant differences (p > 0.05) in growth inhibition between the high and low UVC intensities. The results of this study show that, in pure culture conditions, exposure to UVC with the CSI-D device for ≥3 s is required to achieve consistent reduction of E. coli, S. enterica, and L. monocytogenes.

2.
Curr Res Food Sci ; 7: 100647, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077468

RESUMO

Consumption of aflatoxin-contaminated food can cause severe illness when consumed by humans or livestock. Because the mycotoxin frequently occurs in cereal grains and other agricultural crops, it is crucial to develop portable devices that can be used non-destructively and in real-time to identify aflatoxin-contaminated food materials during early stages of harvesting or processing. In this study, an aflatoxin detection method was developed using a compact Raman device that can be used in the field. Data were obtained using maize samples naturally contaminated with aflatoxin, and the data were analyzed using a machine learning method. Of the multiple classification models evaluated, such as linear discriminant analysis (LDA), linear support vector machines (LSVM), quadratic discriminant analysis (QDA), and quadratic support vector machines and spectral preprocessing methods, the best classification accuracy was achieved at 95.7% using LDA in combination with Savitzky-Golay 2nd derivative (SG2) preprocessing. Partial least squares regression (PLSR) models demonstrated a close-range accuracy within the scope of standard normal variate (SNV) and multiplicative scatter correction (MSC) preprocessing methods, with determination of coefficient values of R2C and R2V of 0.9998 and 0.8322 respectively for SNV, and 0.9916 and 0.8387 respectively for MSC. This study demonstrates the potential use of compact and automated Raman spectroscopy, coupled with chemometrics and machine learning methods, as a tool for rapidly screening food and feed for hazardous substances at on-site field processing locations.

3.
Food Sci Anim Resour ; 43(6): 1150-1169, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37969323

RESUMO

Edible insects are gaining popularity as a potential future food source because of their high protein content and efficient use of space. Black soldier fly larvae (BSFL) are noteworthy because they can be used as feed for various animals including reptiles, dogs, fish, chickens, and pigs. However, if the edible insect industry is to advance, we should use automation to reduce labor and increase production. Consequently, there is a growing demand for sensing technologies that can automate the evaluation of insect quality. This study used short-wave infrared (SWIR) hyperspectral imaging to predict the proximate composition of dried BSFL, including moisture, crude protein, crude fat, crude fiber, and crude ash content. The larvae were dried at various temperatures and times, and images were captured using an SWIR camera. A partial least-squares regression (PLSR) model was developed to predict the proximate content. The SWIR-based hyperspectral camera accurately predicted the proximate composition of BSFL from the best preprocessing model; moisture, crude protein, crude fat, crude fiber, and crude ash content were predicted with high accuracy, with R2 values of 0.89 or more, and root mean square error of prediction values were within 2%. Among preprocessing methods, mean normalization and max normalization methods were effective in proximate prediction models. Therefore, SWIR-based hyperspectral cameras can be used to create automated quality management systems for BSFL.

4.
Sensors (Basel) ; 23(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005450

RESUMO

Seafood mislabeling rates of approximately 20% have been reported globally. Traditional methods for fish species identification, such as DNA analysis and polymerase chain reaction (PCR), are expensive and time-consuming, and require skilled technicians and specialized equipment. The combination of spectroscopy and machine learning presents a promising approach to overcome these challenges. In our study, we took a comprehensive approach by considering a total of 43 different fish species and employing three modes of spectroscopy: fluorescence (Fluor), and reflectance in the visible near-infrared (VNIR) and short-wave near-infrared (SWIR). To achieve higher accuracies, we developed a novel machine-learning framework, where groups of similar fish types were identified and specialized classifiers were trained for each group. The incorporation of global (single artificial intelligence for all species) and dispute classification models created a hierarchical decision process, yielding higher performances. For Fluor, VNIR, and SWIR, accuracies increased from 80%, 75%, and 49% to 83%, 81%, and 58%, respectively. Furthermore, certain species witnessed remarkable performance enhancements of up to 40% in single-mode identification. The fusion of all three spectroscopic modes further boosted the performance of the best single mode, averaged over all species, by 9%. Fish species mislabeling not only poses health-related risks due to contaminants, toxins, and allergens that could be life-threatening, but also gives rise to economic and environmental hazards and loss of nutritional benefits. Our proposed method can detect fish fraud as a real-time alternative to DNA barcoding and other standard methods. The hierarchical system of dispute models proposed in this work is a novel machine-learning tool not limited to this application, and can improve accuracy in any classification problem which contains a large number of classes.


Assuntos
Inteligência Artificial , Dissidências e Disputas , Animais , Aprendizado de Máquina , Análise Espectral , Peixes
5.
Front Plant Sci ; 14: 1240361, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662162

RESUMO

The quality of tropical fruits and vegetables and the expanding global interest in eating healthy foods have resulted in the continual development of reliable, quick, and cost-effective quality assurance methods. The present review discusses the advancement of non-destructive spectral measurements for evaluating the quality of major tropical fruits and vegetables. Fourier transform infrared (FTIR), Near-infrared (NIR), Raman spectroscopy, and hyperspectral imaging (HSI) were used to monitor the external and internal parameters of papaya, pineapple, avocado, mango, and banana. The ability of HSI to detect both spectral and spatial dimensions proved its efficiency in measuring external qualities such as grading 516 bananas, and defects in 10 mangoes and 10 avocados with 98.45%, 97.95%, and 99.9%, respectively. All of the techniques effectively assessed internal characteristics such as total soluble solids (TSS), soluble solid content (SSC), and moisture content (MC), with the exception of NIR, which was found to have limited penetration depth for fruits and vegetables with thick rinds or skins, including avocado, pineapple, and banana. The appropriate selection of NIR optical geometry and wavelength range can help to improve the prediction accuracy of these crops. The advancement of spectral measurements combined with machine learning and deep learning technologies have increased the efficiency of estimating the six maturity stages of papaya fruit, from the unripe to the overripe stages, with F1 scores of up to 0.90 by feature concatenation of data developed by HSI and visible light. The presented findings in the technological advancements of non-destructive spectral measurements offer promising quality assurance for tropical fruits and vegetables.

6.
Front Plant Sci ; 14: 1167139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600204

RESUMO

Unlike standard chemical analysis methods involving time-consuming, labor-intensive, and invasive pretreatment procedures, Raman hyperspectral imaging (HSI) can rapidly and non-destructively detect components without professional supervision. Generally, the Kjeldahl methods and Soxhlet extraction are used to chemically determine the protein and lipid content of soybeans. This study is aimed at developing a high-performance model for estimating soybean protein and lipid content using a non-destructive Raman HSI. Partial least squares regression (PLSR) techniques were used to develop the model using a calibration model based on 70% spectral data, and the remaining 30% of the data were used for validation. The results indicate that the Raman HSI, combined with PLSR, resulted in a protein and lipid model Rp2 of 0.90 and 0.82 with Root Mean Squared Error Prediction (RMSEP) 1.27 and 0.79, respectively. Additionally, this study successfully used the Raman HSI approach to create a prediction image showing the distribution of the targeted components, and could predict protein and lipid based on a single seeds.

7.
Front Plant Sci ; 14: 1133505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469773

RESUMO

Compact and automated sensing systems are needed to monitor plant health for NASA's controlled-environment space crop production. A new hyperspectral system was designed for early detection of plant stresses using both reflectance and fluorescence imaging in visible and near-infrared (VNIR) wavelength range (400-1000 nm). The prototype system mainly includes two LED line lights providing VNIR broadband and UV-A (365 nm) light for reflectance and fluorescence measurement, respectively, a line-scan hyperspectral camera, and a linear motorized stage with a travel range of 80 cm. In an overhead sensor-to-sample arrangement, the stage translates the lights and camera over the plants to acquire reflectance and fluorescence images in sequence during one cycle of line-scan imaging. System software was developed using LabVIEW to realize hardware parameterization, data transfer, and automated imaging functions. The imaging unit was installed in a plant growth chamber at NASA Kennedy Space Center for health monitoring studies for pick-and-eat salad crops. A preliminary experiment was conducted to detect plant drought stress for twelve Dragoon lettuce samples, of which half were well-watered and half were under-watered while growing. A machine learning method using an optimized discriminant classifier based on VNIR reflectance spectra generated classification accuracies over 90% for the first four days of the stress treatment, showing great potential for early detection of the drought stress on lettuce leaves before any visible symptoms and size differences were evident. The system is promising to provide useful information for optimization of growth environment and early mitigation of stresses in space crop production.

8.
Toxins (Basel) ; 15(7)2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37505741

RESUMO

Aflatoxins and fumonisins, commonly found in maize and maize-derived products, frequently co-occur and can cause dangerous illness in humans and animals if ingested in large amounts. Efforts are being made to develop suitable analytical methods for screening that can rapidly detect mycotoxins in order to prevent illness through early detection. A method for classifying contaminated maize by applying hyperspectral imaging techniques including reflectance in the visible and near-infrared (VNIR) and short-wave infrared (SWIR) regions, and fluorescence was investigated. Machine learning classification models in combination with different preprocessing methods were applied to screen ground maize samples for naturally occurring aflatoxin and fumonisin as single contaminants and as co-contaminants. Partial least squares-discriminant analysis (PLS-DA) and support vector machine (SVM) with the radial basis function (RBF) kernel were employed as classification models using cut-off values of each mycotoxin. The classification performance of the SVM was better than that of PLS-DA, and the highest classification accuracies for fluorescence, VNIR, and SWIR were 89.1%, 71.7%, and 95.7%, respectively. SWIR imaging with the SVM model resulted in higher classification accuracies compared to the fluorescence and VNIR models, suggesting that as an alternative to conventional wet chemical methods, the hyperspectral SWIR imaging detection model may be the more effective and efficient analytical tool for mycotoxin analysis compared to fluorescence or VNIR imaging models. These methods represent a food safety screening tool capable of rapidly detecting mycotoxins in maize or other food ingredients consumed by animals or humans.


Assuntos
Aflatoxinas , Fumonisinas , Micotoxinas , Humanos , Animais , Aflatoxinas/análise , Fumonisinas/análise , Zea mays , Imageamento Hiperespectral
9.
Sensors (Basel) ; 23(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37299748

RESUMO

Melamine and its derivative, cyanuric acid, are occasionally added to pet meals because of their nitrogen-rich qualities, leading to the development of several health-related issues. A nondestructive sensing technique that offers effective detection must be developed to address this problem. In conjunction with machine learning and deep learning technique, Fourier transform infrared (FT-IR) spectroscopy was employed in this investigation for the nondestructive quantitative measurement of eight different concentrations of melamine and cyanuric acid added to pet food. The effectiveness of the one-dimensional convolutional neural network (1D CNN) technique was compared with that of partial least squares regression (PLSR), principal component regression (PCR), and a net analyte signal (NAS)-based methodology, called hybrid linear analysis (HLA/GO). The 1D CNN model developed for the FT-IR spectra attained correlation coefficients of 0.995 and 0.994 and root mean square error of prediction values of 0.090% and 0.110% for the prediction datasets on the melamine- and cyanuric acid-contaminated pet food samples, respectively, which were superior to those of the PLSR and PCR models. Therefore, when FT-IR spectroscopy is employed in conjunction with a 1D CNN model, it serves as a potentially rapid and nondestructive method for identifying toxic chemicals added to pet food.


Assuntos
Aprendizado Profundo , Espectroscopia de Infravermelho com Transformada de Fourier , Contaminação de Alimentos/análise
10.
Sensors (Basel) ; 23(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37299875

RESUMO

This study is directed towards developing a fast, non-destructive, and easy-to-use handheld multimode spectroscopic system for fish quality assessment. We apply data fusion of visible near infra-red (VIS-NIR) and short wave infra-red (SWIR) reflectance and fluorescence (FL) spectroscopy data features to classify fish from fresh to spoiled condition. Farmed Atlantic and wild coho and chinook salmon and sablefish fillets were measured. Three hundred measurement points on each of four fillets were taken every two days over 14 days for a total of 8400 measurements for each spectral mode. Multiple machine learning techniques including principal component analysis, self-organized maps, linear and quadratic discriminant analyses, k-nearest neighbors, random forest, support vector machine, and linear regression, as well as ensemble and majority voting methods, were used to explore spectroscopy data measured on fillets and to train classification models to predict freshness. Our results show that multi-mode spectroscopy achieves 95% accuracy, improving the accuracies of the FL, VIS-NIR and SWIR single-mode spectroscopies by 26, 10 and 9%, respectively. We conclude that multi-mode spectroscopy and data fusion analysis has the potential to accurately assess freshness and predict shelf life for fish fillets and recommend this study be expanded to a larger number of species in the future.


Assuntos
Inteligência Artificial , Peixes , Animais , Espectrometria de Fluorescência/métodos
11.
Front Plant Sci ; 14: 1109060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818876

RESUMO

Root rot of Panax ginseng caused by Cylindrocarpon destructans, a soil-borne fungus is typically diagnosed by frequently checking the ginseng plants or by evaluating soil pathogens in a farm, which is a time- and cost-intensive process. Because this disease causes huge economic losses to ginseng farmers, it is important to develop reliable and non-destructive techniques for early disease detection. In this study, we developed a non-destructive method for the early detection of root rot. For this, we used crop phenotyping and analyzed biochemical information collected using the HSI technique. Soil infected with root rot was divided into sterilized and infected groups and seeded with 1-year-old ginseng plants. HSI data were collected four times during weeks 7-10 after sowing. The spectral data were analyzed and the main wavelengths were extracted using partial least squares discriminant analysis. The average model accuracy was 84% in the visible/near-infrared region (29 main wavelengths) and 95% in the short-wave infrared (19 main wavelengths). These results indicated that root rot caused a decrease in nutrient absorption, leading to a decline in photosynthetic activity and the levels of carotenoids, starch, and sucrose. Wavelengths related to phenolic compounds can also be utilized for the early prediction of root rot. The technique presented in this study can be used for the early and timely detection of root rot in ginseng in a non-destructive manner.

12.
Sensors (Basel) ; 22(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36433302

RESUMO

Strawberry (Fragaria × ananassa Duch) plants are vulnerable to climatic change. The strawberry plants suffer from heat and water stress eventually, and the effects are reflected in the development and yields. In this investigation, potential chlorophyll-fluorescence-based indices were selected to detect the early heat and water stress in strawberry plants. The hyperspectral images were used to capture the fluorescence reflectance in the range of 500 nm-900 nm. From the hyperspectral cube, the region of interest (leaves) was identified, followed by the extraction of eight chlorophyll-fluorescence indices from the region of interest (leaves). These eight chlorophyll-fluorescence indices were analyzed deeply to identify the best indicators for our objective. The indices were used to develop machine-learning models to assess the performance of the indicators by accuracy assessment. The overall procedure is proposed as a new workflow for determining strawberry plants' early heat and water stress. The proposed workflow suggests that by including all eight indices, the random-forest classifier performs well, with an accuracy of 94%. With this combination of the potential indices, namely the red-edge vegetation stress index (RVSI), chlorophyll B (Chl-b), pigment-specific simple ratio for chlorophyll B (PSSRb), and the red-edge chlorophyll index (CIREDEDGE), the gradient-boosting classifier performs well, with an accuracy of 91%. The proposed workflow works well with a limited number of training samples which is an added advantage.


Assuntos
Desidratação , Fragaria , Temperatura Alta , Fluorescência , Clorofila
13.
Front Plant Sci ; 13: 963591, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105710

RESUMO

This study demonstrates a method to select wavelength-specific spectral resolutions to optimize a line-scan hyperspectral imaging method for its intended use, which in this case was visible/near-infrared imaging-based multiple-waveband detection of apple bruises. Many earlier studies have explored important aspects of developing apple bruise detection systems, such as key wavelengths and image processing algorithms. Despite the endeavors of many, development of a real-time bruise detection system is not yet a simple task. To overcome these problems, this study investigated selection of optimal wavelength-specific spectral resolutions for detecting bruises on apples by using hyperspectral line-scan imaging with the Random Track function for non-contiguous partial readout, with two experimental parts. The first part identified key-wavelengths and the optimal number of key-wavelengths to use for detecting low-, medium-, and high-impact bruises on apples. These parameters were determined by principal component analysis (PCA) and sequential forward selection (SFS) with four classification methods. The second part determined the optimal spectral resolution for each of the key-wavelengths by selecting and evaluating 21 combinations of exposure time and key-wavelength bandwidths, and then selecting the best combination based on the bruise detection accuracies achieved by each classification method. Each of the four classification methods was found to have a different optimized resolution for high accuracy bruise detection, and the optimized resolutions also allowed for use of shorter exposure times. The results of this work can be used to help develop multispectral imaging systems that provide rapid, cost-effective post-harvest processing to identify bruised apples on commercial processing lines.

14.
Nanoscale Adv ; 4(18): 3725-3736, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36133341

RESUMO

Filling fibers with nanomaterials can create new functions or modify the existing properties. However, as nanocomposite formation for natural cellulosic fibers has been challenging, little information is available on how the embedded nanomaterials alter the properties of cellulosic fibers. Here we filled brown cotton fibers with silver nanoparticles (Ag NPs) to examine their thermosensitive properties. Using naturally present tannins in brown cotton fibers as a reducing agent, Ag NP-filled brown cotton fibers (nanoparticle diameter of about 28 nm, weight fraction of 12 500 mg kg-1) were produced through a one-step process without using any external agents. The in situ formation of Ag NPs was uniform across the nonwoven cotton fabric and was concentrated in the lumen of the fibers. The insertion of Ag NPs into the fibers shifted the thermal decomposition of cellulose to lower temperatures with increased activation energy and promoted heat release during combustion. Ag NPs lowered the thermal effusivity of the fabric, causing the fabric to feel warmer than the control brown cotton. Ag NP-filled brown cotton was more effectively heated to higher temperatures than control brown cotton under the same heating treatments.

15.
Plants (Basel) ; 11(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35406816

RESUMO

The increasing interest in plant phenolic compounds in the past few years has become necessary because of their several important physicochemical properties. Thus, their identification through non-destructive methods has become crucial. This study carried out comparative non-destructive measurements of Arabidopsis thaliana leaf powder sample phenolic compounds using Fourier-transform infrared and near-infrared spectroscopic techniques under six distinct stress conditions. The prediction analysis of 600 leaf powder samples under different stress conditions (LED lights and drought) was performed using PLSR, PCR, and NAS-based HLA/GO regression analysis methods. The results obtained through FT-NIR spectroscopy yielded the highest correlation coefficient (Rp2) value of 0.999, with a minimum error (RMSEP) value of 0.003 mg/g, based on the PLSR model using the MSC preprocessing method, which was slightly better than the correlation coefficient (Rp2) value of 0.980 with an error (RMSEP) value of 0.055 mg/g for FT-IR spectroscopy. Additionally, beta coefficient plots present spectral differences and the identification of important spectral signatures sensitive to the phenolic compounds in the measured powdered samples. Thus, the obtained results demonstrated that FT-NIR spectroscopy combined with partial least squares regression (PLSR) and suitable preprocessing method has a solid potential for non-destructively predicting phenolic compounds in Arabidopsis thaliana leaf powder samples.

16.
Sensors (Basel) ; 22(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35270921

RESUMO

Ensuring the quality of fresh-cut vegetables is the greatest challenge for the food industry and is equally as important to consumers (and their health). Several investigations have proven the necessity of advanced technology for detecting foreign materials (FMs) in fresh-cut vegetables. In this study, the possibility of using near infrared spectral analysis as a potential technique was investigated to identify various types of FMs in seven common fresh-cut vegetables by selecting important wavebands. Various waveband selection methods, such as the weighted regression coefficient (WRC), variable importance in projection (VIP), sequential feature selection (SFS), successive projection algorithm (SPA), and interval PLS (iPLS), were used to investigate the optimal multispectral wavebands to classify the FMs and vegetables. The application of selected wavebands was further tested using NIR imaging, and the results showed good potentiality by identifying 99 out of 107 FMs. The results indicate the high applicability of the multispectral NIR imaging technique to detect FMs in fresh-cut vegetables for industrial application.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Verduras , Algoritmos , Análise dos Mínimos Quadrados , Espectroscopia de Luz Próxima ao Infravermelho/métodos
17.
Front Plant Sci ; 13: 847225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251113

RESUMO

Watermelon (Citrullus lanatus) is a widely consumed, nutritious fruit, rich in water and sugars. In most crops, abiotic stresses caused by changes in temperature, moisture, etc., are a significant challenge during production. Due to the temperature sensitivity of watermelon plants, temperatures must be closely monitored and controlled when the crop is cultivated in controlled environments. Studies have found direct responses to these stresses include reductions in leaf size, number of leaves, and plant size. Stress diagnosis based on plant morphological features (e.g., shape, color, and texture) is important for phenomics studies. The purpose of this study is to classify watermelon plants exposed to low-temperature stress conditions from the normal ones using features extracted using image analysis. In addition, an attempt was made to develop a model for estimating the number of leaves and plant age (in weeks) using the extracted features. A model was developed that can classify normal and low-temperature stress watermelon plants with 100% accuracy. The R2, RMSE, and mean absolute difference (MAD) of the predictive model for the number of leaves were 0.94, 0.87, and 0.88, respectively, and the R2 and RMSE of the model for estimating the plant age were 0.92 and 0.29 weeks, respectively. The models developed in this study can be utilized in high-throughput phenotyping systems for growth monitoring and analysis of phenotypic traits during watermelon cultivation.

18.
Sci Rep ; 12(1): 2392, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165330

RESUMO

Food safety and foodborne diseases are significant global public health concerns. Meat and poultry carcasses can be contaminated by pathogens like E. coli and salmonella, by contact with animal fecal matter and ingesta during slaughter and processing. Since fecal matter and ingesta can host these pathogens, detection, and excision of contaminated regions on meat surfaces is crucial. Fluorescence imaging has proven its potential for the detection of fecal residue but requires expertise to interpret. In order to be used by meat cutters without special training, automated detection is needed. This study used fluorescence imaging and deep learning algorithms to automatically detect and segment areas of fecal matter in carcass images using EfficientNet-B0 to determine which meat surface images showed fecal contamination and then U-Net to precisely segment the areas of contamination. The EfficientNet-B0 model achieved a 97.32% accuracy (precision 97.66%, recall 97.06%, specificity 97.59%, F-score 97.35%) for discriminating clean and contaminated areas on carcasses. U-Net segmented areas with fecal residue with an intersection over union (IoU) score of 89.34% (precision 92.95%, recall 95.84%, specificity 99.79%, F-score 94.37%, and AUC 99.54%). These results demonstrate that the combination of deep learning and fluorescence imaging techniques can improve food safety assurance by allowing the industry to use CSI-D fluorescence imaging to train employees in trimming carcasses as part of their Hazard Analysis Critical Control Point zero-tolerance plan.


Assuntos
Aprendizado Profundo , Fezes/microbiologia , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Carne/análise , Imagem Óptica/métodos , Matadouros , Animais , Galinhas , Escherichia coli/química , Escherichia coli/isolamento & purificação , Fezes/química , Inocuidade dos Alimentos , Carne/microbiologia , Salmonella/química , Salmonella/isolamento & purificação
19.
Foods ; 11(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35053964

RESUMO

The demand for rapid and nondestructive methods to determine chemical components in food and agricultural products is proliferating due to being beneficial for screening food quality. This research investigates the feasibility of Fourier transform near-infrared (FT-NIR) and Fourier transform infrared spectroscopy (FT-IR) to predict total as well as an individual type of isoflavones and oligosaccharides using intact soybean samples. A partial least square regression method was performed to develop models based on the spectral data of 310 soybean samples, which were synchronized to the reference values evaluated using a conventional assay. Furthermore, the obtained models were tested using soybean varieties not initially involved in the model construction. As a result, the best prediction models of FT-NIR were allowed to predict total isoflavones and oligosaccharides using intact seeds with acceptable performance (R2p: 0.80 and 0.72), which were slightly better than the model obtained based on FT-IR data (R2p: 0.73 and 0.70). The results also demonstrate the possibility of using FT-NIR to predict individual types of evaluated components, denoted by acceptable performance values of prediction model (R2p) of over 0.70. In addition, the result of the testing model proved the model's performance by obtaining a similar R2 and error to the calibration model.

20.
Sensors (Basel) ; 21(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34770529

RESUMO

Contamination inspection is an ongoing concern for food distributors, restaurant owners, caterers, and others who handle food. Food contamination must be prevented, and zero tolerance legal requirements and damage to the reputation of institutions or restaurants can be very costly. This paper introduces a new handheld fluorescence-based imaging system that can rapidly detect, disinfect, and document invisible organic residues and biofilms which may host pathogens. The contamination, sanitization inspection, and disinfection (CSI-D) system uses light at two fluorescence excitation wavelengths, ultraviolet C (UVC) at 275 nm and violet at 405 nm, for the detection of organic residues, including saliva and respiratory droplets. The 275 nm light is also utilized to disinfect pathogens commonly found within the contaminated residues. Efficacy testing of the neutralizing effects of the ultraviolet light was conducted for Aspergillus fumigatus, Streptococcus pneumoniae, and the influenza A virus (a fungus, a bacterium, and a virus, respectively, each commonly found in saliva and respiratory droplets). After the exposure to UVC light from the CSI-D, all three pathogens experienced deactivation (> 99.99%) in under ten seconds. Up to five-log reductions have also been shown within 10 s of UVC irradiation from the CSI-D system.


Assuntos
Desinfecção , Raios Ultravioleta , Biofilmes , Fungos , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA