Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nat Commun ; 15(1): 4153, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755212

RESUMO

Viral myocarditis, an inflammatory disease of the heart, causes significant morbidity and mortality. Type I interferon (IFN)-mediated antiviral responses protect against myocarditis, but the mechanisms are poorly understood. We previously identified A Disintegrin And Metalloproteinase domain 9 (ADAM9) as an important factor in viral pathogenesis. ADAM9 is implicated in a range of human diseases, including inflammatory diseases; however, its role in viral infection is unknown. Here, we demonstrate that mice lacking ADAM9 are more susceptible to encephalomyocarditis virus (EMCV)-induced death and fail to mount a characteristic type I IFN response. This defect in type I IFN induction is specific to positive-sense, single-stranded RNA (+ ssRNA) viruses and involves melanoma differentiation-associated protein 5 (MDA5)-a key receptor for +ssRNA viruses. Mechanistically, ADAM9 binds to MDA5 and promotes its oligomerization and thereby downstream mitochondrial antiviral-signaling protein (MAVS) activation in response to EMCV RNA stimulation. Our findings identify a role for ADAM9 in the innate antiviral response, specifically MDA5-mediated IFN production, which protects against virus-induced cardiac damage, and provide a potential therapeutic target for treatment of viral myocarditis.


Assuntos
Proteínas ADAM , Infecções por Cardiovirus , Vírus da Encefalomiocardite , Imunidade Inata , Interferon Tipo I , Helicase IFIH1 Induzida por Interferon , Proteínas de Membrana , Camundongos Knockout , Miocardite , Animais , Vírus da Encefalomiocardite/imunologia , Helicase IFIH1 Induzida por Interferon/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/imunologia , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Infecções por Cardiovirus/imunologia , Infecções por Cardiovirus/virologia , Proteínas ADAM/metabolismo , Proteínas ADAM/genética , Proteínas ADAM/imunologia , Camundongos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Miocardite/imunologia , Miocardite/virologia , Humanos , Camundongos Endogâmicos C57BL , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Transdução de Sinais/imunologia , Masculino , Células HEK293
2.
bioRxiv ; 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38260617

RESUMO

Chemokines play critical roles in the recruitment and activation of immune cells in both homeostatic and pathologic conditions. Here, we examined chemokine ligand-receptor pairs to better understand the immunopathogenesis of cutaneous lupus erythematosus (CLE), a complex autoimmune connective tissue disorder. We used suction blister biopsies to measure cellular infiltrates with spectral flow cytometry in the interface dermatitis reaction, as well as 184 protein analytes in interstitial skin fluid using Olink targeted proteomics. Flow and Olink data concordantly demonstrated significant increases in T cells and antigen presenting cells (APCs). We also performed spatial transcriptomics and spatial proteomics of punch biopsies using digital spatial profiling (DSP) technology on CLE skin and healthy margin controls to examine discreet locations within the tissue. Spatial and Olink data confirmed elevation of interferon (IFN) and IFN-inducible CXCR3 chemokine ligands. Comparing involved versus uninvolved keratinocytes in CLE samples revealed upregulation of essential inflammatory response genes in areas near interface dermatitis, including AIM2. Our Olink data confirmed upregulation of Caspase 8, IL-18 which is the final product of AIM2 activation, and induced chemokines including CCL8 and CXCL6 in CLE lesional samples. Chemotaxis assays using PBMCs from healthy and CLE donors revealed that T cells are equally poised to respond to CXCR3 ligands, whereas CD14+CD16+ APC populations are more sensitive to CXCL6 via CXCR1 and CD14+ are more sensitive to CCL8 via CCR2. Taken together, our data map a pathway from keratinocyte injury to lymphocyte recruitment in CLE via AIM2-Casp8-IL-18-CXCL6/CXCR1 and CCL8/CCR2, and IFNG/IFNL1-CXCL9/CXCL11-CXCR3.

3.
Am Nat ; 202(5): 733-736, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37963124
4.
Cell Rep Methods ; 3(9): 100570, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37751688

RESUMO

Reprogramming somatic cells into pluripotent stem cells (iPSCs) enables the study of systems in vitro. To increase the throughput of reprogramming, we present induction of pluripotency from pooled cells (iPPC)-an efficient, scalable, and reliable reprogramming procedure. Using our deconvolution algorithm that employs pooled sequencing of single-nucleotide polymorphisms (SNPs), we accurately estimated individual donor proportions of the pooled iPSCs. With iPPC, we concurrently reprogrammed over one hundred donor lymphoblastoid cell lines (LCLs) into iPSCs and found strong correlations of individual donors' reprogramming ability across multiple experiments. Individual donors' reprogramming ability remains consistent across both same-day replicates and multiple experimental runs, and the expression of certain immunoglobulin precursor genes may impact reprogramming ability. The pooled iPSCs were also able to differentiate into cerebral organoids. Our procedure enables a multiplex framework of using pooled libraries of donor iPSCs for downstream research and investigation of in vitro phenotypes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Algoritmos , Linhagem Celular , Genes de Imunoglobulinas
5.
Cell Metab ; 35(8): 1441-1456.e9, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37494932

RESUMO

This study reveals a previously uncharacterized mechanism to restrict intestinal inflammation via a regulatory RNA transcribed from a noncoding genomic locus. We identified a novel transcript of the lncRNA HOXA11os specifically expressed in the distal colon that is reduced to undetectable levels in colitis. HOXA11os is localized to mitochondria under basal conditions and interacts with a core subunit of complex 1 of the electron transport chain (ETC) to maintain its activity. Deficiency of HOXA11os in colonic myeloid cells results in complex I deficiency, dysfunctional oxidative phosphorylation (OXPHOS), and the production of mitochondrial reactive oxygen species (mtROS). As a result, HOXA11os-deficient mice develop spontaneous intestinal inflammation and are hypersusceptible to colitis. Collectively, these studies identify a new regulatory axis whereby a lncRNA maintains intestinal homeostasis and restricts inflammation in the colon through the regulation of complex I activity.


Assuntos
Colite , RNA Longo não Codificante , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Colite/genética , Colite/metabolismo , Inflamação/metabolismo , Mitocôndrias/genética , Homeostase , Mucosa Intestinal/metabolismo
6.
Prog Neurobiol ; 226: 102460, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37149081

RESUMO

Myelinating oligodendrocytes are essential for neuronal communication and homeostasis of the central nervous system (CNS). One of the most abundant molecules in the mammalian CNS is N-acetylaspartate (NAA), which is catabolized into L-aspartate and acetate by the enzyme aspartoacylase (ASPA) in oligodendrocytes. The resulting acetate moiety is thought to contribute to myelin lipid synthesis. In addition, affected NAA metabolism has been implicated in several neurological disorders, including leukodystrophies and demyelinating diseases such as multiple sclerosis. Genetic disruption of ASPA function causes Canavan disease, which is hallmarked by increased NAA levels, myelin and neuronal loss, large vacuole formation in the CNS, and early death in childhood. Although NAA's direct role in the CNS is inconclusive, in peripheral adipose tissue, NAA-derived acetate has been found to modify histones, a mechanism known to be involved in epigenetic regulation of cell differentiation. We hypothesize that a lack of cellular differentiation in the brain contributes to the disruption of myelination and neurodegeneration in diseases with altered NAA metabolism, such as Canavan disease. Our study demonstrates that loss of functional Aspa in mice disrupts myelination and shifts the transcriptional expression of neuronal and oligodendrocyte markers towards less differentiated stages in a spatiotemporal manner. Upon re-expression of ASPA, these oligodendrocyte and neuronal lineage markers are either improved or normalized, suggesting that NAA breakdown by Aspa plays an essential role in the maturation of neurons and oligodendrocytes. Also, this effect of ASPA re-expression is blunted in old mice, potentially due to limited ability of neuronal, rather than oligodendrocyte, recovery.


Assuntos
Doença de Canavan , Camundongos , Animais , Doença de Canavan/genética , Doença de Canavan/metabolismo , Linhagem da Célula , Epigênese Genética , Sistema Nervoso Central/metabolismo , Oligodendroglia , Bainha de Mielina/metabolismo , Mamíferos
7.
J Immunol ; 210(10): 1531-1542, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37000471

RESUMO

We used a mouse model to study how Mycobacterium tuberculosis subverts host defenses to persist in macrophages despite immune pressure. CD4 T cells can recognize macrophages infected with a single bacillus in vitro. Under identical conditions, CD8 T cells inefficiently recognize infected macrophages and fail to restrict M. tuberculosis growth, although they can inhibit M. tuberculosis growth during high-burden intracellular infection. We show that high intracellular M. tuberculosis numbers cause macrophage death, leading other macrophages to scavenge cellular debris and cross-present the TB10.4 Ag to CD8 T cells. Presentation by infected macrophages requires M. tuberculosis to have a functional ESX-1 type VII secretion system. These data indicate that phagosomal membrane damage and cell death promote MHC class I presentation of the immunodominant Ag TB10.4 by macrophages. Although this mode of Ag presentation stimulates cytokine production that we presume would be host beneficial, killing of uninfected cells could worsen immunopathology. We suggest that shifting the focus of CD8 T cell recognition to uninfected macrophages would limit the interaction of CD8 T cells with infected macrophages and impair CD8 T cell-mediated resolution of tuberculosis.


Assuntos
Bacillus , Mycobacterium tuberculosis , Tuberculose , Sistemas de Secreção Tipo VII , Camundongos , Animais , Sistemas de Secreção Tipo VII/metabolismo , Antígenos de Bactérias , Bacillus/metabolismo , Linfócitos T CD8-Positivos , Macrófagos
8.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769182

RESUMO

Cell-intrinsic immune mechanisms control intracellular pathogens that infect eukaryotes. The intracellular pathogen Mycobacterium tuberculosis (Mtb) evolved to withstand cell-autonomous immunity to cause persistent infections and disease. A potent inducer of cell-autonomous immunity is the lymphocyte-derived cytokine IFNγ. While the production of IFNγ by T cells is essential to protect against Mtb, it is not capable of fully eradicating Mtb infection. This suggests that Mtb evades a subset of IFNγ-mediated antimicrobial responses, yet what mechanisms Mtb resists remains unclear. The IFNγ-inducible Guanylate binding proteins (GBPs) are key host defense proteins able to control infections with intracellular pathogens. GBPs were previously shown to directly restrict Mycobacterium bovis BCG yet their role during Mtb infection has remained unknown. Here, we examine the importance of a cluster of five GBPs on mouse chromosome 3 in controlling Mycobacterial infection. While M. bovis BCG is directly restricted by GBPs, we find that the GBPs on chromosome 3 do not contribute to the control of Mtb replication or the associated host response to infection. The differential effects of GBPs during Mtb versus M. bovis BCG infection is at least partially explained by the absence of the ESX1 secretion system from M. bovis BCG, since Mtb mutants lacking the ESX1 secretion system become similarly susceptible to GBP-mediated immune defense. Therefore, this specific genetic interaction between the murine host and Mycobacteria reveals a novel function for the ESX1 virulence system in the evasion of GBP-mediated immunity.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Camundongos , Animais , Mycobacterium tuberculosis/metabolismo , Tuberculose/microbiologia , Proteínas de Transporte/metabolismo , Vacina BCG
9.
Diabetes ; 72(2): 261-274, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36346618

RESUMO

Identifying the early islet cellular processes of autoimmune type 1 diabetes (T1D) in humans is challenging given the absence of symptoms during this period and the inaccessibility of the pancreas for sampling. In this article, we study temporal events in pancreatic islets in LEW.1WR1 rats, in which autoimmune diabetes can be induced with virus infection, by performing transcriptional analysis of islets harvested during the prediabetic period. Single-cell RNA-sequencing and differential expression analyses of islets from prediabetic rats reveal subsets of ß- and α-cells under stress as evidenced by heightened expression, over time, of a transcriptional signature characterized by interferon-stimulated genes, chemokines including Cxcl10, major histocompatibility class I, and genes for the ubiquitin-proteasome system. Mononuclear phagocytes show increased expression of inflammatory markers. RNA-in situ hybridization of rat pancreatic tissue defines the spatial distribution of Cxcl10+ ß- and α-cells and their association with CD8+ T cell infiltration, a hallmark of insulitis and islet destruction. Our studies define early islet transcriptional events during immune cell recruitment to islets and reveal spatial associations between stressed ß- and α-cells and immune cells. Insights into such early processes can assist in the development of therapeutic and prevention strategies for T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Estado Pré-Diabético , Humanos , Ratos , Animais , Diabetes Mellitus Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , RNA/metabolismo , Inflamação/genética , Inflamação/metabolismo , Ratos Endogâmicos Lew
10.
Proc Natl Acad Sci U S A ; 119(42): e2122188119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215490

RESUMO

MHC molecules are not randomly distributed on the plasma membrane but instead are present in discrete nanoclusters. The mechanisms that control formation of MHC I nanoclusters and the importance of such structures are incompletely understood. Here, we report a molecular association between tetraspanin-5 (Tspan5) and MHC I molecules that started in the endoplasmic reticulum and was maintained on the plasma membrane. This association was observed both in mouse dendritic cells and in human cancer cell lines. Loss of Tspan5 reduced the size of MHC I clusters without affecting MHC I peptide loading, delivery of complexes to the plasma membrane, or overall surface MHC I levels. Functionally, CD8 T cell responses to antigen presented by Tspan5-deficient dendritic cells were impaired but were restored by antibody-induced reclustering of MHC I molecules. In contrast, Tspan5 did not associate with two other plasma membrane proteins, Flotillin1 and CD55, with or the endoplasmic reticulum proteins Tapasin and TAP. Thus, our findings identify a mechanism underlying the clustering of MHC I molecules that is important for optimal T cell responses.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I , Animais , Linfócitos T CD8-Positivos , Análise por Conglomerados , Humanos , Proteínas de Membrana/genética , Camundongos , Tetraspaninas/genética
11.
Am Nat ; 199(4): 576-583, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35324380

RESUMO

AbstractHummingbird flower mites are assumed to monopolize single host plant species owing to sexual selection for unique mating rendezvous sites. We tested the main assumption of the mating rendezvous hypothesis-extreme host specialization-by reconstructing interactions among tropical hummingbird flower mites and their host plants using DNA barcoding and taxonomic identifications. We collected 10,654 mites from 489 flowers. We extracted DNA from 1,928 mite specimens and amplified the cytochrome c oxidase I (CO1) DNA barcode. We analyzed the network structure to assess the degree of generalization or specialization of mites to their host plants. We recorded 18 species of hummingbird flower mites from three genera (Proctolaelaps, Rhinoseius, and Tropicoseius) interacting with 14 species of plants. We found that generalist mites are common, and congeneric mite species often share host plants. Our results challenge the assumption of strict specialization that supports this system as an example of mating rendezvous evolution.


Assuntos
Ácaros , Animais , Aves , DNA , Código de Barras de DNA Taxonômico , Flores , Ácaros/genética
12.
Nat Neurosci ; 25(4): 484-492, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35314823

RESUMO

The olfactory system's ability to detect and discriminate between the vast array of chemicals present in the environment is critical for an animal's survival. In mammals, the first step of this odor processing is executed by olfactory sensory neurons, which project their axons to a stereotyped location in the olfactory bulb (OB) to form glomeruli. The stereotyped positioning of glomeruli in the OB suggests an importance for this organization in odor perception. However, because the location of only a limited subset of glomeruli has been determined, it has been challenging to determine the relationship between glomerular location and odor discrimination. Using a combination of single-cell RNA sequencing, spatial transcriptomics and machine learning, we have generated a map of most glomerular positions in the mouse OB. These observations significantly extend earlier studies and suggest an overall organizational principle in the OB that may be used by the brain to assist in odor decoding.


Assuntos
Bulbo Olfatório , Neurônios Receptores Olfatórios , Animais , Mamíferos , Camundongos , Odorantes , Bulbo Olfatório/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Olfato , Transcriptoma
13.
Cytopathology ; 33(3): 312-320, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35102620

RESUMO

CONTEXT: Rapid on-site evaluation (ROSE) optimises the performance of cytology, but requires skilled handling, and smearing can make the material unavailable for some ancillary tests. There is a need to facilitate ROSE without sacrificing part of the sample. OBJECTIVE: We evaluated the image quality of inexpensive deconvolution fluorescence microscopy for optically sectioning non-smeared fine needle aspiration (FNA) tissue fragments. DESIGN: A portion of residual material from 14 FNA samples was stained for 3 min in Hoechst 33342 and Sypro™ Red to label DNA and protein respectively, transferred to an imaging chamber, and imaged at 200× or 400× magnification at 1 micron intervals using a GE DeltaVision inverted fluorescence microscope. A deconvolution algorithm was applied to remove out-of-plane signal, and the resulting images were inverted and pseudocoloured to resemble H&E sections. Five cytopathologists blindly diagnosed 2 to 4 representative image stacks per case (total 70 evaluations), and later compared them to conventional epifluorescent images. RESULTS: Accurate definitive diagnoses were rendered in 45 (64%) of 70 total evaluations; equivocal diagnoses (atypical or suspicious) were made in 21 (30%) of the 70. There were two false positive and two false negative "definite" diagnoses in three cases (4/70; 6%). Cytopathologists preferred deconvolved images compared to raw images (P < 0.01). The imaged fragments were recovered and prepared into a ThinPrep or cell block without discernible alteration. CONCLUSIONS: Deconvolution improves image quality of FNA fragments compared to epifluorescence, often allowing definitive diagnosis while enabling the ROSE material to be subsequently triaged.


Assuntos
Microscopia , Avaliação Rápida no Local , Biópsia por Agulha Fina/métodos , Citodiagnóstico , Técnicas Citológicas , Humanos
14.
J Evol Biol ; 34(9): 1432-1446, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34265126

RESUMO

Tropical ectotherms are particularly vulnerable to global warming because their physiologies are assumed to be adapted to narrow temperature ranges. This study explores three mechanisms potentially constraining thermal adaptation to global warming in tropical insects: (a) Trade-offs in genotypic performance at different temperatures (the jack-of-all-trades hypothesis), (b) positive genetic covariance in performance, with some genotypes performing better than others at viable temperatures (the 'winner' and 'loser' genotypes hypothesis), or (c) limited genetic variation as the potential result of relaxed selection and the loss of genes associated with responses to extreme temperatures (the gene decay hypothesis). We estimated changes in growth and survival rates at multiple temperatures for three tropical rain forest insect herbivores (Cephaloleia rolled-leaf beetles, Chrysomelidae). We reared 2,746 individuals in a full sibling experimental design, at temperatures known to be experienced by this genus of beetles in nature (i.e. 10-35°C). Significant genetic covariance was positive for 16 traits, supporting the 'winner' and 'loser' genotypes hypothesis. Only two traits displayed negative cross-temperature performance correlations. We detected a substantial contribution of genetic variance in traits associated with size and mass (0%-44%), but low heritability in plastic traits such as development time (0%-6%) or survival (0%-4%). Lowland insect populations will most likely decline if current temperatures increase between 2 and 5°C. It is concerning that local adaption is already lagging behind current temperatures. The consequences of maintaining the current global warming trajectory would be devastating for tropical insects. However, if humans can limit or slow warming, many tropical ectotherms might persist in their current locations and potentially adapt to warmer temperatures.


Assuntos
Aquecimento Global , Clima Tropical , Aclimatação , Adaptação Fisiológica/genética , Animais , Mudança Climática , Humanos , Insetos , Temperatura
15.
Am Nat ; 198(1): 113-127, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34143727

RESUMO

AbstractTropical mountains might protect species from global warming by facilitating biotic migrations upslope. Current predictions of tropical biotic responses to global warming are based on correlations between species elevational distributions and temperatures. Because biotic attritions, range shifts, and mountaintop extinctions result from complex demographic processes, predictive models must be based on mechanistic associations between temperature and fitness. Our study combines long-term temperature records with experimental demography to determine the contribution of local adaptation to organismal resilience in a warming world. On the Barva volcano in Costa Rica, Cephaloleia belti (Coleoptera: Chrysomelidae) displays high-elevation (960-2,100 m asl) and low-elevation (50-960 m asl) mitochondrial haplotypes. We reared haplotype cohorts at temperatures prevalent along the elevational gradient (i.e., 10°-30°C). Based on ambient temperatures recorded every half hour for 4 years, we projected average instantaneous population growth rates ([Formula: see text]) at current and future temperatures (i.e., +1° to 6°C) for each beetle haplotype. Haplotypes are adapted to local temperatures, but with a temperature increase beyond 2°C, both haplotypes will face lower-elevation demographic attritions and extinctions. Upper distribution limits serve as potential elevational refugia from global warming. This study shows how species resilience to global warming emerges from complex fitness responses of locally adapted phenotypes facing novel environments.


Assuntos
Aquecimento Global , Refúgio de Vida Selvagem , Aclimatação , Animais , Demografia , Insetos
16.
J Cell Physiol ; 236(8): 5937-5952, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33452672

RESUMO

A persistent basal tone in the internal anal sphincter (IAS) is essential for keeping the anal canal closed and fecal continence; its inhibition via the rectoanal inhibitory reflex (RAIR) is required for successful defecation. However, cellular signals underlying the IAS basal tone remain enigmatic. Here we report the origin and molecular mechanisms of calcium signals that control the IAS basal tone, using a combination approach including a novel IAS slice preparation that retains cell arrangement and architecture as in vivo, 2-photon imaging, and cell-specific gene-modified mice. We found that IAS smooth muscle cells generate two forms of contractions (i.e., phasic and sustained contraction) and Ca2+ signals (i.e., synchronized Ca2+ oscillations [SCaOs] and asynchronized Ca2+ oscillations [ACaOs]) that last for hours. RyRs, TMEM16A, L-type Ca2+ channels, and gap junctions are required for SCaOs, which account for phasic contraction and 75% of sustained contraction. Nevertheless, only RyRs are required for ACaOs, which contribute 25% of sustained contraction. Nitric oxide, the primary neurotransmitter mediating the RAIR, blocks both types of Ca2+ signals, leading to IAS's full relaxation. Our results show that the oscillating nature of Ca2+ signals generates and maintains the basal tone without causing cytotoxicity to IAS. Our study provides insight into fecal continence and normal defecation.


Assuntos
Canal Anal/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Músculo Liso/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Camundongos , Contração Muscular/fisiologia , Óxido Nítrico/metabolismo , Reflexo/fisiologia
17.
Mucosal Immunol ; 14(1): 229-241, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483198

RESUMO

Granulocyte recruitment to the pulmonary compartment is a hallmark of progressive tuberculosis (TB). This process is well-documented to promote immunopathology, but can also enhance the replication of the pathogen. Both the specific granulocytes responsible for increasing mycobacterial burden and the underlying mechanisms remain obscure. We report that the known immunomodulatory effects of these cells, such as suppression of protective T-cell responses, play a limited role in altering host control of mycobacterial replication in susceptible mice. Instead, we find that the adaptive immune response preferentially restricts the burden of bacteria within monocytes and macrophages compared to granulocytes. Specifically, mycobacteria within inflammatory lesions are preferentially found within long-lived granulocytes that express intermediate levels of the Ly6G marker and low levels of antimicrobial genes. These cells progressively accumulate in the lung and correlate with bacterial load and disease severity, and the ablation of Ly6G-expressing cells lowers mycobacterial burden. These observations suggest a model in which dysregulated granulocytic influx promotes disease by creating a permissive intracellular niche for mycobacterial growth and persistence.


Assuntos
Granulócitos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia , Animais , Carga Bacteriana , Biomarcadores , Quimiotaxia de Leucócito/imunologia , Citocinas/metabolismo , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Granulócitos/metabolismo , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Depleção Linfocítica , Camundongos , Camundongos Knockout , Índice de Gravidade de Doença , Tuberculose/diagnóstico , Tuberculose/metabolismo
18.
J Neurosci ; 40(34): 6503-6521, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32661024

RESUMO

Microglia, a resident CNS macrophage, are dynamic cells, constantly extending and retracting their processes as they contact and functionally regulate neurons and other glial cells. There is far less known about microglia-vascular interactions, particularly under healthy steady-state conditions. Here, we use the male and female mouse cerebral cortex to show that a higher percentage of microglia associate with the vasculature during the first week of postnatal development compared with older ages and that the timing of these associations is dependent on the fractalkine receptor (CX3CR1). Similar developmental microglia-vascular associations were detected in the human brain. Using live imaging in mice, we found that juxtavascular microglia migrated when microglia are actively colonizing the cortex and became stationary by adulthood to occupy the same vascular space for nearly 2 months. Further, juxtavascular microglia at all ages associate with vascular areas void of astrocyte endfeet, and the developmental shift in microglial migratory behavior along vessels corresponded to when astrocyte endfeet more fully ensheath vessels. Together, our data provide a comprehensive assessment of microglia-vascular interactions. They support a mechanism by which microglia use the vasculature to migrate within the developing brain parenchyma. This migration becomes restricted on the arrival of astrocyte endfeet such that juxtavascular microglia become highly stationary and stable in the mature cortex.SIGNIFICANCE STATEMENT We report the first extensive analysis of juxtavascular microglia in the healthy, developing, and adult brain. Live imaging revealed that juxtavascular microglia within the cortex are highly motile and migrate along vessels as they are colonizing cortical regions. Using confocal, expansion, super-resolution, and electron microscopy, we determined that microglia associate with the vasculature at all ages in areas lacking full astrocyte endfoot coverage and motility of juxtavascular microglia ceases as astrocyte endfeet more fully ensheath the vasculature. Our data lay the fundamental groundwork to investigate microglia-astrocyte cross talk and juxtavascular microglial function in the healthy and diseased brain. They further provide a potential mechanism by which vascular interactions facilitate microglial colonization of the brain to later regulate neural circuit development.


Assuntos
Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/crescimento & desenvolvimento , Microglia/fisiologia , Animais , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Capilares/crescimento & desenvolvimento , Capilares/ultraestrutura , Córtex Cerebral/ultraestrutura , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Microglia/ultraestrutura , Córtex Somatossensorial/metabolismo
19.
PLoS Pathog ; 16(6): e1008621, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32544188

RESUMO

During tuberculosis, lung myeloid cells have two opposing roles: they are an intracellular niche occupied by Mycobacterium tuberculosis, and they restrict bacterial replication. Lung myeloid cells from mice infected with yellow-fluorescent protein expressing M. tuberculosis were analyzed by flow cytometry and transcriptional profiling to identify the cell types infected and their response to infection. CD14, CD38, and Abca1 were expressed more highly by infected alveolar macrophages and CD11cHi monocyte-derived cells compared to uninfected cells. CD14, CD38, and Abca1 "triple positive" (TP) cells had not only the highest infection rates and bacterial loads, but also a strong interferon-γ signature and nitric oxide synthetase-2 production indicating recognition by T cells. Despite evidence of T cell recognition and appropriate activation, these TP macrophages are a cellular compartment occupied by M. tuberculosis long-term. Defining the niche where M. tuberculosis resists elimination promises to provide insight into why inducing sterilizing immunity is a formidable challenge.


Assuntos
Antígenos CD11/imunologia , Macrófagos Alveolares , Monócitos , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/imunologia , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/imunologia , Animais , Antígenos CD11/genética , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/microbiologia , Macrófagos Alveolares/patologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Monócitos/imunologia , Monócitos/microbiologia , Monócitos/patologia , Mycobacterium tuberculosis/genética , Linfócitos T/imunologia , Linfócitos T/microbiologia , Linfócitos T/patologia , Tuberculose/genética , Tuberculose/patologia
20.
Dev Cell ; 51(5): 575-586.e4, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31735663

RESUMO

Ferroptosis, regulated cell death characterized by the iron-dependent accumulation of lethal lipid reactive oxygen species, contributes to tissue homeostasis and numerous pathologies, and it may be exploited for therapy. Cells differ in their sensitivity to ferroptosis, however, and a key challenge is to understand mechanisms that contribute to resistance. Using RNA-seq to identify genes that contribute to ferroptosis resistance, we discovered that pro-ferroptotic stimuli, including inhibition of the lipid hydroperoxidase GPX4 and detachment from the extracellular matrix, induce expression of prominin2, a pentaspanin protein implicated in regulation of lipid dynamics. Prominin2 facilitates ferroptosis resistance in mammary epithelial and breast carcinoma cells. Mechanistically, prominin2 promotes the formation of ferritin-containing multivesicular bodies (MVBs) and exosomes that transport iron out of the cell, inhibiting ferroptosis. These findings reveal that ferroptosis resistance can be driven by a prominin2-MVB-exosome-ferritin pathway and have broad implications for iron homeostasis, intracellular trafficking, and cancer.


Assuntos
Neoplasias da Mama/metabolismo , Carcinoma/metabolismo , Ferroptose , Ferro/metabolismo , Glicoproteínas de Membrana/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Matriz Extracelular/metabolismo , Feminino , Ferritinas/metabolismo , Humanos , Glicoproteínas de Membrana/genética , Corpos Multivesiculares/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA