Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Cell Rep ; 43(4): 114006, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38554279

RESUMO

Reprogramming to pluripotency is associated with DNA damage and requires the functions of the BRCA1 tumor suppressor. Here, we leverage separation-of-function mutations in BRCA1/2 as well as the physical and/or genetic interactions between BRCA1 and its associated repair proteins to ascertain the relevance of homology-directed repair (HDR), stalled fork protection (SFP), and replication gap suppression (RGS) in somatic cell reprogramming. Surprisingly, loss of SFP and RGS is inconsequential for the transition to pluripotency. In contrast, cells deficient in HDR, but proficient in SFP and RGS, reprogram with reduced efficiency. Conversely, the restoration of HDR function through inactivation of 53bp1 rescues reprogramming in Brca1-deficient cells, and 53bp1 loss leads to elevated HDR and enhanced reprogramming in mouse and human cells. These results demonstrate that somatic cell reprogramming is especially dependent on repair of replication-associated double-strand breaks (DSBs) by the HDR activity of BRCA1 and BRCA2 and can be improved in the absence of 53BP1.


Assuntos
Proteína BRCA1 , Reprogramação Celular , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Replicação do DNA , Reparo de DNA por Recombinação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética
2.
Cell ; 187(4): 861-881.e32, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301646

RESUMO

Genomic instability can trigger cancer-intrinsic innate immune responses that promote tumor rejection. However, cancer cells often evade these responses by overexpressing immune checkpoint regulators, such as PD-L1. Here, we identify the SNF2-family DNA translocase SMARCAL1 as a factor that favors tumor immune evasion by a dual mechanism involving both the suppression of innate immune signaling and the induction of PD-L1-mediated immune checkpoint responses. Mechanistically, SMARCAL1 limits endogenous DNA damage, thereby suppressing cGAS-STING-dependent signaling during cancer cell growth. Simultaneously, it cooperates with the AP-1 family member JUN to maintain chromatin accessibility at a PD-L1 transcriptional regulatory element, thereby promoting PD-L1 expression in cancer cells. SMARCAL1 loss hinders the ability of tumor cells to induce PD-L1 in response to genomic instability, enhances anti-tumor immune responses and sensitizes tumors to immune checkpoint blockade in a mouse melanoma model. Collectively, these studies uncover SMARCAL1 as a promising target for cancer immunotherapy.


Assuntos
Antígeno B7-H1 , DNA Helicases , Imunidade Inata , Melanoma , Evasão Tumoral , Animais , Camundongos , Antígeno B7-H1/metabolismo , Instabilidade Genômica , Melanoma/imunologia , Melanoma/metabolismo , DNA Helicases/metabolismo
3.
Cells ; 12(23)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38067190

RESUMO

Homology-directed repair (HDR) of double-strand DNA breaks (DSBs) is dependent on enzymatic resection of DNA ends by the Mre11/Rad50/Nbs1 complex. DNA resection is triggered by the CtIP/Sae2 protein, which allosterically promotes Mre11-mediated endonuclease DNA cleavage at a position internal to the DSB. Although the mechanics of resection, including the initial endonucleolytic step, are largely conserved in eucaryotes, CtIP and its functional counterpart in Saccharomyces cerevisiae (Sae2) share only a modest stretch of amino acid homology. Nonetheless, this stretch contains two highly conserved phosphorylation sites for cyclin-dependent kinases (T843 in mouse) and the damage-induced ATM/ATR kinases (T855 in mouse), both of which are required for DNA resection. To explore the function of ATM/ATR phosphorylation at Ctip-T855, we generated and analyzed mice expressing the Ctip-T855A mutant. Surprisingly, unlike Ctip-null mice and Ctip-T843A-expressing mice, both of which undergo embryonic lethality, homozygous CtipT855A/T855A mice develop normally. Nonetheless, they are hypersensitive to ionizing radiation, and CtipT855A/T855A mouse embryo fibroblasts from these mice display marked defects in DNA resection, chromosomal stability, and HDR-mediated repair of DSBs. Thus, although ATM/ATR phosphorylation of CtIP-T855 is not required for normal animal development, it enhances CtIP-mediated DNA resection in response to acute stress, such as genotoxin exposure.


Assuntos
Proteínas de Transporte , Proteínas de Ciclo Celular , Mutagênicos , Animais , Camundongos , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fosforilação , Saccharomyces cerevisiae/metabolismo
4.
Kidney Med ; 5(9): 100700, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37649728

RESUMO

Rationale & Objective: Little is known about hospital admissions in nondialysis patients with chronic kidney disease (CKD) before death or starting kidney replacement therapy (KRT). Study Design: Retrospective observational cohort study. Setting & Participants: Hospitalizations among 7,201 patients with CKD from 10 public renal clinics in Queensland (QLD), enrolled in the CKD.QLD registry starting in May 2011, were followed for 25,496.34 person-years until they started receiving KRT or died, or until June 30, 2018. Predictors: Demographic and clinical characteristics of patients with CKD. Outcomes: Hospital admissions. Analytical Approach: We evaluated the association of demographic and clinical features with hospitalizations, length of hospital stay, and cost. Results: Approximately 81.5% of the patients were admitted at least once, with 42,283 admissions, costing Australian dollars (AUD) 231 million. The average number of admissions per person-year was 1.7, and the cost was AUD 9,060, 10 times and 2 times their Australian averages, respectively. Single (1-day) admissions constituted 59.2% of all the hospital episodes, led by neoplasms (largely chemotherapy), anemia, CKD-related conditions and eye conditions (largely cataract extractions), but only 14.8% of the total costs. Approximately 41% of admissions were >1-day admissions, constituting 85.2% of the total costs, with cardiovascular conditions, respiratory conditions, CKD-related conditions, and injuries, fractures, or poisoning being the dominant causes. Readmission within 30 days of discharge constituted >42% of the admissions and 46.8% costs. Admissions not directly related to CKD constituted 90% of the admissions and costs. More than 40% of the admissions and costs were through the emergency department. Approximately 19% of the hospitalized patients and 27% of the admissions did not have kidney disease mentioned as either principal or associate causes. Limitations: Variable follow-up times because of different dates of consent. Conclusions: The hospital burden of patients with CKD is mainly driven by complex multiday admissions and readmissions involving comorbid conditions, which may not be directly related to their CKD. Strategies to prevent these complex admissions and readmissions should minimize hospital costs and outcomes. Plain-Language Summary: We analyzed primary causes, types, and costs of hospitalizations among 7,201 patients with chronic kidney disease (CKD) from renal speciality clinics across Queensland, Australia, over an average follow-up of 3.54 years. The average annual cost per person was $9,060, and was the highest in those with more advanced CKD, higher age, and with diabetes. More than 85% of costs were driven by more complex hospitalizations with longer length of stay. Cardiovascular disease was the single largest contributor for hospitalizations, length of hospital stay, and total costs. Readmission within 30 days of discharge, particularly for the same disorder, and multiday admissions should be the main targets for mitigation of hospital costs in this population.

5.
Proc Natl Acad Sci U S A ; 120(31): e2301972120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487079

RESUMO

PARP1 (poly-ADP ribose polymerase 1) is recruited and activated by DNA strand breaks, catalyzing the generation of poly-ADP-ribose (PAR) chains from NAD+. PAR relaxes chromatin and recruits other DNA repair factors, including XRCC1 and DNA Ligase 3, to maintain genomic stability. Here we show that, in contrast to the normal development of Parp1-null mice, heterozygous expression of catalytically inactive Parp1 (E988A, Parp1+/A) acts in a dominant-negative manner to disrupt murine embryogenesis. As such, all the surviving F1 Parp1+/A mice are chimeras with mixed Parp1+/AN (neoR retention) cells that act similarly to Parp1+/-. Pure F2 Parp1+/A embryos were found at Mendelian ratios at the E3.5 blastocyst stage but died before E9.5. Compared to Parp1-/- cells, genotype and expression-validated pure Parp1+/A cells retain significant ADP-ribosylation and PARylation activities but accumulate markedly higher levels of sister chromatid exchange and mitotic bridges. Despite proficiency for homologous recombination and nonhomologous end-joining measured by reporter assays and supported by normal lymphocyte and germ cell development, Parp1+/A cells are hypersensitive to base damages, radiation, and Topoisomerase I and II inhibition. The sensitivity of Parp1+/A cells to base damages and Topo inhibitors exceed Parp1-/- controls. The findings show that the enzymatically inactive PARP1 dominant negatively blocks DNA repair in selective pathways beyond wild-type PARP1 and establishes a crucial physiological difference between PARP1 inactivation vs. deletion. As a result, the expression of enzymatically inactive PARP1 from one allele is sufficient to abrogate murine embryonic development, providing a mechanism for the on-target side effect of PARP inhibitors used for cancer therapy.


Assuntos
ADP-Ribosilação , Instabilidade Genômica , Feminino , Gravidez , Animais , Camundongos , Causalidade , Alelos , Genótipo
7.
Nat Commun ; 14(1): 1941, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024504

RESUMO

Since Mdm2 (Mouse double minute 2) inhibitors show serious toxicity in clinic studies, different approaches to achieve therapeutic reactivation of p53-mediated tumor suppression in cancers need to be explored. Here, we identify the USP2 (ubiquitin specific peptidase 2)-VPRBP (viral protein R binding protein) axis as an important pathway for p53 regulation. Like Mdm2, VPRBP is a potent repressor of p53 but VPRBP stability is controlled by USP2. Interestingly, the USP2-VPRBP axis also regulates PD-L1 (programmed death-ligand 1) expression. Strikingly, the combination of a small-molecule USP2 inhibitor and anti-PD1 monoclonal antibody leads to complete regression of the tumors expressing wild-type p53. In contrast to Mdm2, knockout of Usp2 in mice has no obvious effect in normal tissues. Moreover, no obvious toxicity is observed upon the USP2 inhibitor treatment in vivo as Mdm2-mediated regulation of p53 remains intact. Our study reveals a promising strategy for p53-based therapy by circumventing the toxicity issue.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas de Transporte , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
8.
BMC Nephrol ; 23(1): 372, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402958

RESUMO

BACKGROUND: A functioning vascular access (VA) is crucial to providing adequate hemodialysis (HD) and considered a critically important outcome by patients and healthcare professionals. A validated, patient-important outcome measure for VA function that can be easily measured in research and practice to harvest reliable and relevant evidence for informing patient-centered HD care is lacking. Vascular Access outcome measure for function: a vaLidation study In hemoDialysis (VALID) aims to assess the accuracy and feasibility of measuring a core outcome for VA function established by the international Standardized Outcomes in Nephrology (SONG) initiative. METHODS: VALID is a prospective, multi-center, multinational validation study that will assess the accuracy and feasibility of measuring VA function, defined as the need for interventions to enable and maintain the use of a VA for HD. The primary objective is to determine whether VA function can be measured accurately by clinical staff as part of routine clinical practice (Assessor 1) compared to the reference standard of documented VA procedures collected by a VA expert (Assessor 2) during a 6-month follow-up period. Secondary outcomes include feasibility and acceptability of measuring VA function and the time to, rate of, and type of VA interventions. An estimated 612 participants will be recruited from approximately 10 dialysis units of different size, type (home-, in-center and satellite), governance (private versus public), and location (rural versus urban) across Australia, Canada, Europe, and Malaysia. Validity will be measured by the sensitivity and specificity of the data acquisition process. The sensitivity corresponds to the proportion of correctly identified interventions by Assessor 1, among the interventions identified by Assessor 2 (reference standard). The feasibility of measuring VA function will be assessed by the average data collection time, data completeness, feasibility questionnaires and semi-structured interviews on key feasibility aspects with the assessors. DISCUSSION: Accuracy, acceptability, and feasibility of measuring VA function as part of routine clinical practice are required to facilitate global implementation of this core outcome across all HD trials. Global use of a standardized, patient-centered outcome measure for VA function in HD research will enhance the consistency and relevance of trial evidence to guide patient-centered care. TRIAL REGISTRATION: Clinicaltrials.gov: NCT03969225. Registered on 31st May 2019.


Assuntos
Avaliação de Resultados em Cuidados de Saúde , Diálise Renal , Humanos , Estudos de Viabilidade , Estudos Multicêntricos como Assunto , Estudos Prospectivos , Diálise Renal/métodos , Inquéritos e Questionários
9.
Nephrology (Carlton) ; 27(12): 934-944, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36161428

RESUMO

AIM: To describe adults with (non-dialysis) chronic kidney disease (CKD) in nine public renal practice sites in the Australian state of Queensland. METHODS: 7,060 persons were recruited to a CKD Registry in May 2011 and until start of kidney replacement therapy (KRT), death without KRT or June 2018, for a median period of 3.4 years. RESULTS: The cohort comprised 7,060 persons, 52% males, with a median age of 68 yr; 85% had CKD stages 3A to 5, 45.4% were diabetic, 24.6% had diabetic nephropathy, and 51.7% were obese. Younger persons mostly had glomerulonephritis or genetic renal disease, while older persons mostly had diabetic nephropathy, renovascular disease and multiple diagnoses. Proportions of specific renal diagnoses varied >2-fold across sites. Over the first year, eGFR fell in 24% but was stable or improved in 76%. Over follow up, 10% started KRT, at a median age of 62 yr, most with CKD stages 4 and 5 at consent, while 18.8% died without KRT, at a median age of 80 yr. Indigenous people were younger at consent and more often had diabetes and diabetic kidney disease and had higher incidence rates of KRT. CONCLUSION: The spectrum of characteristics in CKD patients in renal practices is much broader than represented by the minority who ultimately start KRT. Variation in CKD by causes, age, site and Indigenous status, the prevalence of obesity, relative stability of kidney function in many persons over the short term, and differences between those who KRT and die without KRT are all important to explore.


Assuntos
Nefropatias Diabéticas , Insuficiência Renal Crônica , Adulto , Masculino , Humanos , Idoso , Idoso de 80 Anos ou mais , Feminino , Queensland/epidemiologia , Diálise Renal , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/epidemiologia , Nefropatias Diabéticas/terapia , Austrália , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/terapia , Obesidade/diagnóstico , Obesidade/epidemiologia , Rim
12.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34521752

RESUMO

CtIP is a DNA end resection factor widely implicated in alternative end-joining (A-EJ)-mediated translocations in cell-based reporter systems. To address the physiological role of CtIP, an essential gene, in translocation-mediated lymphomagenesis, we introduced the T855A mutation at murine CtIP to nonhomologous end-joining and Tp53 double-deficient mice that routinely succumbed to lymphomas carrying A-EJ-mediated IgH-Myc translocations. T855 of CtIP is phosphorylated by ATM or ATR kinases upon DNA damage to promote end resection. Here, we reported that the T855A mutation of CtIP compromised the neonatal development of Xrcc4-/-Tp53-/- mice and the IgH-Myc translocation-driven lymphomagenesis in DNA-PKcs-/-Tp53-/- mice. Mechanistically, the T855A mutation limits DNA end resection length without affecting hairpin opening, translocation frequency, or fork stability. Meanwhile, after radiation, CtIP-T855A mutant cells showed a consistent decreased Chk1 phosphorylation and defects in the G2/M cell cycle checkpoint. Consistent with the role of T855A mutation in lymphomagenesis beyond translocation, the CtIP-T855A mutation also delays splenomegaly in λ-Myc mice. Collectively, our study revealed a role of CtIP-T855 phosphorylation in lymphomagenesis beyond A-EJ-mediated chromosomal translocation.


Assuntos
Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Dano ao DNA/genética , Linfoma/genética , Linfoma/patologia , Fosforilação/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Camundongos , Mutação/genética , Translocação Genética/genética
13.
Mol Cell ; 81(19): 4008-4025.e7, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34508659

RESUMO

BRCA1/2 mutant tumor cells display an elevated mutation burden, the etiology of which remains unclear. Here, we report that these cells accumulate ssDNA gaps and spontaneous mutations during unperturbed DNA replication due to repriming by the DNA primase-polymerase PRIMPOL. Gap accumulation requires the DNA glycosylase SMUG1 and is exacerbated by depletion of the translesion synthesis (TLS) factor RAD18 or inhibition of the error-prone TLS polymerase complex REV1-Polζ by the small molecule JH-RE-06. JH-RE-06 treatment of BRCA1/2-deficient cells results in reduced mutation rates and PRIMPOL- and SMUG1-dependent loss of viability. Through cellular and animal studies, we demonstrate that JH-RE-06 is preferentially toxic toward HR-deficient cancer cells. Furthermore, JH-RE-06 remains effective toward PARP inhibitor (PARPi)-resistant BRCA1 mutant cells and displays additive toxicity with crosslinking agents or PARPi. Collectively, these studies identify a protective and mutagenic role for REV1-Polζ in BRCA1/2 mutant cells and provide the rationale for using REV1-Polζ inhibitors to treat BRCA1/2 mutant tumors.


Assuntos
Quebras de DNA de Cadeia Simples , DNA Primase/metabolismo , Replicação do DNA , DNA de Neoplasias/biossíntese , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Enzimas Multifuncionais/metabolismo , Neoplasias/enzimologia , Nucleotidiltransferases/metabolismo , Reparo de DNA por Recombinação , Animais , Antineoplásicos/farmacologia , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Linhagem Celular Tumoral , DNA Primase/genética , DNA de Neoplasias/genética , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Feminino , Células HEK293 , Humanos , Camundongos Nus , Enzimas Multifuncionais/genética , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Inibidores da Síntese de Ácido Nucleico/farmacologia , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/genética , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Proc Natl Acad Sci U S A ; 117(41): 25700-25711, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989150

RESUMO

To generate antibodies with different effector functions, B cells undergo Immunoglobulin Heavy Chain (IgH) class switch recombination (CSR). The ligation step of CSR is usually mediated by the classical nonhomologous end-joining (cNHEJ) pathway. In cNHEJ-deficient cells, a remarkable ∼25% of CSR can be achieved by the alternative end-joining (Alt-EJ) pathway that preferentially uses microhomology (MH) at the junctions. While A-EJ-mediated repair of endonuclease-generated breaks requires DNA end resection, we show that CtIP-mediated DNA end resection is dispensable for A-EJ-mediated CSR using cNHEJ-deficient B cells. High-throughput sequencing analyses revealed that loss of ATM/ATR phosphorylation of CtIP at T855 or ATM kinase inhibition suppresses resection without altering the MH pattern of the A-EJ-mediated switch junctions. Moreover, we found that ATM kinase promotes Alt-EJ-mediated CSR by suppressing interchromosomal translocations independent of end resection. Finally, temporal analyses reveal that MHs are enriched in early internal deletions even in cNHEJ-proficient B cells. Thus, we propose that repetitive IgH switch regions represent favored substrates for MH-mediated end-joining contributing to the robustness and resection independence of A-EJ-mediated CSR.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Reparo do DNA por Junção de Extremidades , Switching de Imunoglobulina , Cadeias Pesadas de Imunoglobulinas/genética , Motivos de Aminoácidos , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linfócitos B/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cadeias Pesadas de Imunoglobulinas/metabolismo , Camundongos , Fosforilação , Recombinação Genética
15.
Cancer Med ; 9(18): 6766-6775, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32730698

RESUMO

Nearly 80% of advanced cancer patients are afflicted with cachexia, a debilitating syndrome characterized by extensive loss of muscle mass and function. Cachectic cancer patients have a reduced tolerance to antineoplastic therapies and often succumb to premature death from the wasting of respiratory and cardiac muscles. Since there are no available treatments for cachexia, it is imperative to understand the mechanisms that drive cachexia in order to devise effective strategies to treat it. Although 25% of metastatic breast cancer patients develop symptoms of muscle wasting, mechanistic studies of breast cancer cachexia have been hampered by a lack of experimental models. Using tumor cells deficient for BARD1, a subunit of the BRCA1/BARD1 tumor suppressor complex, we have developed a new orthotopic model of triple-negative breast cancer that spontaneously metastasizes to the lung and leads to systemic muscle deterioration. We show that expression of the metal-ion transporter, Zip14, is markedly upregulated in cachectic muscles from these mice and is associated with elevated intramuscular zinc and iron levels. Aberrant Zip14 expression and altered metal-ion homeostasis could therefore represent an underlying mechanism of cachexia development in human patients with triple-negative breast cancer. Our study provides a unique model for studying breast cancer cachexia and identifies a potential therapeutic target for its treatment.


Assuntos
Caquexia/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Neoplasias Pulmonares/metabolismo , Músculo Esquelético/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas Supressoras de Tumor/deficiência , Ubiquitina-Proteína Ligases/deficiência , Animais , Proteína BRCA1/metabolismo , Caquexia/genética , Caquexia/patologia , Proteínas de Transporte de Cátions/genética , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Camundongos , Músculo Esquelético/patologia , Norisoprenoides/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Regulação para Cima , Zinco/metabolismo
17.
Cell Rep ; 30(10): 3280-3295.e6, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32160537

RESUMO

Genome editing technologies have transformed our ability to engineer desired genomic changes within living systems. However, detecting precise genomic modifications often requires sophisticated, expensive, and time-consuming experimental approaches. Here, we describe DTECT (Dinucleotide signaTurE CapTure), a rapid and versatile detection method that relies on the capture of targeted dinucleotide signatures resulting from the digestion of genomic DNA amplicons by the type IIS restriction enzyme AcuI. DTECT enables the accurate quantification of marker-free precision genome editing events introduced by CRISPR-dependent homology-directed repair, base editing, or prime editing in various biological systems, such as mammalian cell lines, organoids, and tissues. Furthermore, DTECT allows the identification of oncogenic mutations in cancer mouse models, patient-derived xenografts, and human cancer patient samples. The ease, speed, and cost efficiency by which DTECT identifies genomic signatures should facilitate the generation of marker-free cellular and animal models of human disease and expedite the detection of human pathogenic variants.


Assuntos
Edição de Genes , Variação Genética , Genômica , Animais , Proteína BRCA1/genética , Proteína BRCA2/genética , Sequência de Bases , DNA/genética , Modelos Animais de Doenças , Loci Gênicos , Marcadores Genéticos , Genótipo , Células HEK293 , Humanos , Camundongos , Mutação/genética , Células NIH 3T3 , Neoplasias/genética , Nucleotídeos/genética , Oncogenes , Reparo de DNA por Recombinação/genética , Mapeamento por Restrição
18.
Intern Med J ; 50(7): 830-837, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31760686

RESUMO

BACKGROUND: The incidence, presentation and outcomes of lupus nephritis (LN) vary with geography, ethnicity, socioeconomic status and gender. There are relatively few data on LN in the non-Caucasian populations in Australia. AIMS: To describe the clinical presentation, histological features, natural history, and outcomes of a historical cohort of Aboriginal and Torres Strait Islanders people in Far North Queensland with biopsy-proven LN. METHODS: This is a retrospective observational study, and the study was conducted in Cairns and Hinterland Hospital and Health Service, Queensland, Australia. The study included Aboriginal and Torres Strait Islander patients with biopsy-proven LN treated between 1990 and 2013. The main outcome measures were renal replacement therapy and overall patient survival. RESULTS: Aboriginal and Torres Strait Islander people represented a substantial proportion (n = 16/40, 40%) of all patients diagnosed with LN during the observation period. The frequency of nephrotic range proteinuria (n = 11/14, 78.5%), estimated glomerular filtration rate <60 mL/min/1.73 m2 (n = 6/14, 42.8%) and proliferative LN (n = 13/16, 81.25%) was high at the time of presentation. Despite use of multiple immunosuppressive agents, the overall rate of remission was poor (n = 4/14, 28.5%) and incidence of end-stage kidney disease (n = 4/14, 28.5%) and death (n = 5/16, 31.25%) was high. CONCLUSIONS: The clinical presentation of LN in Aboriginal and Torres Strait Islanders in Far North Queensland is severe and the response to standard immunosuppressive therapy is unsatisfactory. Larger prospective multi-centre studies are required to better understand ethnic disparities in prognosis and response to immunosuppressive therapy in this specific population.


Assuntos
Serviços de Saúde do Indígena , Nefrite Lúpica , Austrália/epidemiologia , Humanos , Nefrite Lúpica/diagnóstico , Nefrite Lúpica/tratamento farmacológico , Nefrite Lúpica/epidemiologia , Havaiano Nativo ou Outro Ilhéu do Pacífico , Estudos Prospectivos , Queensland/epidemiologia
19.
J Exp Med ; 216(7): 1648-1663, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31097467

RESUMO

B cell development requires efficient proliferation and successful assembly and modifications of the immunoglobulin gene products. CtIP is an essential gene implicated in end resection and DNA repair. Here, we show that CtIP is essential for early B cell development but dispensable in naive B cells. CtIP loss is well tolerated in G1-arrested B cells and during V(D)J recombination, but in proliferating B cells, CtIP loss leads to a progressive cell death characterized by ATM hyperactivation, G2/M arrest, genomic instability, and 53BP1 nuclear body formation, indicating that the essential role of CtIP during proliferation underscores its stage-specific requirement in B cells. B cell proliferation requires phosphorylation of CtIP at T847 presumably by CDK, but not its interaction with CtBP or Rb or its nuclease activity. CtIP phosphorylation by ATM/ATR at T859 (T855 in mice) promotes end resection in G1-arrested cells but is dispensable for B cell development and class switch recombination, suggesting distinct roles for T859 and T847 phosphorylation in B cell development.


Assuntos
Linfócitos B/fisiologia , Proteínas de Transporte/fisiologia , Proteínas de Ciclo Celular/fisiologia , Ativação Linfocitária/fisiologia , Animais , Morte Celular , Proliferação de Células/fisiologia , Pontos de Checagem da Fase G2 do Ciclo Celular , Pontos de Checagem da Fase M do Ciclo Celular , Camundongos , Fosforilação , Recombinação V(D)J/fisiologia
20.
Kidney Med ; 1(5): 315-318, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32734212

RESUMO

New technologies such as genomics present opportunities to deliver precision medicine, including in the diagnosis of rare kidney disorders. Simultaneously, social media platforms such as Twitter can provide rapid and wide-reaching information dissemination in health care and science. We present 2 cases in which the reporting of a novel genetic cause for human kidney disease was communicated through Twitter and then subsequently noted by treating clinicians, thereby resulting in rapid clinical diagnostic translation. In 1 family, this involved the reporting of heterozygous variants in GREB1L relating to autosomal dominant unilateral or bilateral renal agenesis, and in the other family, this involved biallelic variants in CLDN10 relating to autosomal recessive hypokalemic renal tubular phenotypes. The times from Twitter notification to clinical diagnostic genetic report for these families were 111 and 200 days, respectively. Although caution is required, these cases show that social media platforms can contribute to rapid and accessible academic communication that may benefit clinicians, genomics-based researchers, and patients and families affected by rare kidney diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA