Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Arch Toxicol ; 96(12): 3363-3371, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36195745

RESUMO

Electronic cigarettes (e-cigarettes) have been used widely as an alternative to conventional cigarettes and have become particularly popular among young adults. A growing body of evidence has shown that e-cigarettes are associated with acute lung injury and adverse effects in multiple other organs. Previous studies showed that high emissions of aldehydes (formaldehyde and acetaldehyde) in aerosols were associated with increased usage of the same e-cigarette coils. However, the impact on lung function of using aged coils has not been reported. We investigated the relationship between coil age and acute lung injury in mice exposed to experimental vaping for 1 h (2 puffs/min, 100 ml/puff). The e-liquid contains propylene glycol and vegetable glycerin (50:50, vol) only. The concentrations of formaldehyde and acetaldehyde in the vaping aerosols increased with age of the nichrome coils starting at 1200 puffs. Mice exposed to e-cigarette aerosols produced from 1800, but not 0 or 900, puff-aged coils caused acute lung injury, increased lung wet/dry weight ratio, and induced lung inflammation (IL-6, TNF-α, IL-1ß, MIP-2). Exposure to vaping aerosols from 1800 puff-aged coils decreased heart rate, respiratory rate, and oxygen saturation in mice compared to mice exposed to air or aerosols from new coils. In conclusion, we observed that the concentration of aldehydes (formaldehyde and acetaldehyde) increased with repeated and prolonged usage of e-cigarette coils. Exposure to high levels of aldehyde in vaping aerosol was associated with acute lung injury in mice. These findings show significant risk of lung injury associated with prolonged use of e-cigarette devices.


Assuntos
Lesão Pulmonar Aguda , Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Animais , Camundongos , Acetaldeído , Lesão Pulmonar Aguda/induzido quimicamente , Aldeídos/toxicidade , Formaldeído/toxicidade , Glicerol , Interleucina-6 , Propilenoglicol/toxicidade , Aerossóis e Gotículas Respiratórios , Fator de Necrose Tumoral alfa
2.
Sci Rep ; 12(1): 7065, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35487970

RESUMO

Atelectasis is a frequent clinical condition, yet knowledge is limited and controversial on its biological contribution towards lung injury. We assessed the regional proteomics of atelectatic versus normally-aerated lung tissue to test the hypothesis that immune and alveolar-capillary barrier functions are compromised by purely atelectasis and dysregulated by additional systemic inflammation (lipopolysaccharide, LPS). Without LPS, 130 proteins were differentially abundant in atelectasis versus aerated lung, mostly (n = 126) with less abundance together with negatively enriched processes in immune, endothelial and epithelial function, and Hippo signaling pathway. Instead, LPS-exposed atelectasis produced 174 differentially abundant proteins, mostly (n = 108) increased including acute lung injury marker RAGE and chemokine CCL5. Functional analysis indicated enhanced leukocyte processes and negatively enriched cell-matrix adhesion and cell junction assembly with LPS. Additionally, extracellular matrix organization and TGF-ß signaling were negatively enriched in atelectasis with decreased adhesive glycoprotein THBS1 regardless of LPS. Concordance of a subset of transcriptomics and proteomics revealed overlap of leukocyte-related gene-protein pairs and processes. Together, proteomics of exclusively atelectasis indicates decreased immune response, which converts into an increased response with LPS. Alveolar-capillary barrier function-related proteomics response is down-regulated in atelectasis irrespective of LPS. Specific proteomics signatures suggest biological mechanistic and therapeutic targets for atelectasis-associated lung injury.


Assuntos
Lesão Pulmonar Aguda , Atelectasia Pulmonar , Lesão Pulmonar Aguda/metabolismo , Humanos , Inflamação/metabolismo , Lipopolissacarídeos/metabolismo , Pulmão/metabolismo , Proteômica , Atelectasia Pulmonar/metabolismo
3.
Haematologica ; 107(2): 478-488, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34320783

RESUMO

Hepcidin regulates iron homeostasis by controlling the level of ferroportin, the only membrane channel that facilitates export of iron from within cells. Binding of hepcidin to ferroportin induces the ubiquitination of ferroportin at multiple lysine residues and subsequently causes the internalization and degradation of the ligand-channel complex within lysosomes. The objective of this study was to identify components of the ubiquitin system that are involved in ferroportin degradation. A HepG2 cell line, which inducibly expresses ferroportingreen fluorescent protein (FPN-GFP), was established to test the ability of small interfering (siRNA) directed against components of the ubiquitin system to prevent BMP6- and exogenous hepcidin-induced ferroportin degradation. Of the 88 siRNA directed against components of the ubiquitin pathway that were tested, siRNA-mediated depletion of the alternative E1 enzyme UBA6 as well as the adaptor protein NDFIP1 prevented BMP6- and hepcidin-induced degradation of ferroportin in vitro. A third component of the ubiquitin pathway, ARIH1, indirectly inhibited ferroportin degradation by impairing BMP6-mediated induction of hepcidin. In mice, the AAV-mediated silencing of Ndfip1 in the murine liver increased the level of hepatic ferroportin and increased circulating iron. The results suggest that the E1 enzyme UBA6 and the adaptor protein NDFIP1 are involved in iron homeostasis by regulating the degradation of ferroportin. These specific components of the ubiquitin system may be promising targets for the treatment of iron-related diseases, including iron overload and anemia of inflammation.


Assuntos
Proteínas de Transporte de Cátions , Sobrecarga de Ferro , Proteínas de Membrana , Enzimas Ativadoras de Ubiquitina , Animais , Proteínas de Transporte/genética , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Humanos , Ferro/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteólise , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
4.
Lasers Surg Med ; 54(2): 256-267, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34350599

RESUMO

BACKGROUND AND OBJECTIVES: Carbon monoxide (CO) inhalation is the leading cause of poison-related deaths in the United States. CO binds to hemoglobin (Hb), displaces oxygen, and reduces oxygen delivery to tissues. The optimal treatment for CO poisoning in patients with normal lung function is the administration of hyperbaric oxygen (HBO). However, hyperbaric chambers are only available in medical centers with specialized equipment, resulting in delayed therapy. Visible light dissociates CO from Hb with minimal effect on oxygen binding. In a previous study, we combined a membrane oxygenator with phototherapy at 623 nm to produce a "mini" photo-ECMO (extracorporeal membrane oxygenation) device, which improved CO elimination and survival in CO-poisoned rats. The objective of this study was to develop a larger photo-ECMO device ("maxi" photo-ECMO) and to test its ability to remove CO from a porcine model of CO poisoning. STUDY DESIGN/MATERIALS AND METHODS: The "maxi" photo-ECMO device and the photo-ECMO system (six maxi photo-ECMO devices assembled in parallel), were tested in an in vitro circuit of CO poisoning. To assess the ability of the photo-ECMO device and the photo-ECMO system to remove CO from CO-poisoned blood in vitro, the half-life of COHb (COHb-t1/2 ), as well as the percent COHb reduction in a single blood pass through the device, were assessed. In the in vivo studies, we assessed the COHb-t1/2 in a CO-poisoned pig under three conditions: (1) While the pig breathed 100% oxygen through the endotracheal tube; (2) while the pig was connected to the photo-ECMO system with no light exposure; and (3) while the pig was connected to the photo-ECMO system, which was exposed to red light. RESULTS: The photo-ECMO device was able to fully oxygenate the blood after a single pass through the device. Compared to ventilation with 100% oxygen alone, illumination with red light together with 100% oxygen was twice as efficient in removing CO from blood. Changes in gas flow rates did not alter CO elimination in one pass through the device. Increases in irradiance up to 214 mW/cm2 were associated with an increased rate of CO elimination. The photo-ECMO device was effective over a range of blood flow rates and with higher blood flow rates, more CO was eliminated. A photo-ECMO system composed of six photo-ECMO devices removed CO faster from CO-poisoned blood than a single photo-ECMO device. In a CO-poisoned pig, the photo-ECMO system increased the rate of CO elimination without significantly increasing the animal's body temperature or causing hemodynamic instability. CONCLUSION: In this study, we developed a photo-ECMO system and demonstrated its ability to remove CO from CO-poisoned 45-kg pigs. Technical modifications of the photo-ECMO system, including the development of a compact, portable device, will permit treatment of patients with CO poisoning at the scene of their poisoning, during transit to a local emergency room, and in hospitals that lack HBO facilities.


Assuntos
Intoxicação por Monóxido de Carbono , Venenos , Animais , Monóxido de Carbono , Intoxicação por Monóxido de Carbono/terapia , Carboxihemoglobina/metabolismo , Humanos , Fototerapia/métodos , Ratos , Suínos
5.
Crit Care Explor ; 3(7): e0461, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34235455

RESUMO

OBJECTIVE: To investigate whether individualized optimization of mechanical ventilation through the implementation of a lung rescue team could reduce the need for venovenous extracorporeal membrane oxygenation in patients with obesity and acute respiratory distress syndrome and decrease ICU and hospital length of stay and mortality. DESIGN: Single-center, retrospective study at the Massachusetts General Hospital from June 2015 to June 2019. PATIENTS: All patients with obesity and acute respiratory distress syndrome who were referred for venovenous extracorporeal membrane oxygenation evaluation due to hypoxemic respiratory failure. INTERVENTION: Evaluation and individualized optimization of mechanical ventilation by the lung rescue team before the decision to proceed with venovenous extracorporeal membrane oxygenation. The control group was those patients managed according to hospital standard of care without lung rescue team evaluation. MEASUREMENT AND MAIN RESULTS: All 20 patients (100%) allocated in the control group received venovenous extracorporeal membrane oxygenation, whereas 10 of 13 patients (77%) evaluated by the lung rescue team did not receive venovenous extracorporeal membrane oxygenation. Patients who underwent lung rescue team evaluation had a shorter duration of mechanical ventilation (p = 0.03) and shorter ICU length of stay (p = 0.03). There were no differences between groups in in-hospital, 30-day, or 1-year mortality. CONCLUSIONS: In this hypothesis-generating study, individualized optimization of mechanical ventilation of patients with acute respiratory distress syndrome and obesity by a lung rescue team was associated with a decrease in the utilization of venovenous extracorporeal membrane oxygenation, duration of mechanical ventilation, and ICU length of stay. Mortality was not modified by the lung rescue team intervention.

6.
Chest ; 159(6): 2373-2383, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34099131

RESUMO

BACKGROUND: Increased pleural pressure affects the mechanics of breathing of people with class III obesity (BMI > 40 kg/m2). RESEARCH QUESTION: What are the acute effects of CPAP titrated to match pleural pressure on cardiopulmonary function in spontaneously breathing patients with class III obesity? STUDY DESIGN AND METHODS: We enrolled six participants with BMI within normal range (control participants, group I) and 12 patients with class III obesity (group II) divided into subgroups: IIa, BMI of 40 to 50 kg/m2; and IIb, BMI of ≥ 50 kg/m2. The study was performed in two phases: in phase 1, participants were supine and breathing spontaneously at atmospheric pressure, and in phase 2, participants were supine and breathing with CPAP titrated to match their end-expiratory esophageal pressure in the absence of CPAP. Respiratory mechanics, esophageal pressure, and hemodynamic data were collected, and right heart function was evaluated by transthoracic echocardiography. RESULTS: The levels of CPAP titrated to match pleural pressure in group I, subgroup IIa, and subgroup IIb were 6 ± 2 cmH2O, 12 ± 3 cmH2O, and 18 ± 4 cmH2O, respectively. In both subgroups IIa and IIb, CPAP titrated to match pleural pressure decreased minute ventilation (IIa, P = .03; IIb, P = .03), improved peripheral oxygen saturation (IIa, P = .04; IIb, P = .02), improved homogeneity of tidal volume distribution between ventral and dorsal lung regions (IIa, P = .22; IIb, P = .03), and decreased work of breathing (IIa, P < .001; IIb, P = .003) with a reduction in both the work spent to initiate inspiratory flow as well as tidal ventilation. In five hypertensive participants with obesity, BP decreased to normal range, without impairment of right heart function. INTERPRETATION: In ambulatory patients with class III obesity, CPAP titrated to match pleural pressure decreased work of breathing and improved respiratory mechanics while maintaining hemodynamic stability, without impairing right heart function. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT02523352; URL: www.clinicaltrials.gov.


Assuntos
Resistência das Vias Respiratórias/fisiologia , Obesidade/fisiopatologia , Cavidade Pleural/fisiopatologia , Respiração , Volume de Ventilação Pulmonar/fisiologia , Esôfago/fisiopatologia , Humanos , Pressão , Troca Gasosa Pulmonar
7.
Mol Genet Metab ; 133(1): 83-93, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33752971

RESUMO

Leigh syndrome is a severe mitochondrial neurodegenerative disease with no effective treatment. In the Ndufs4-/- mouse model of Leigh syndrome, continuously breathing 11% O2 (hypoxia) prevents neurodegeneration and leads to a dramatic extension (~5-fold) in lifespan. We investigated the effect of hypoxia on the brain metabolism of Ndufs4-/- mice by studying blood gas tensions and metabolite levels in simultaneously sampled arterial and cerebral internal jugular venous (IJV) blood. Relatively healthy Ndufs4-/- and wildtype (WT) mice breathing air until postnatal age ~38 d were compared to Ndufs4-/- and WT mice breathing air until ~38 days old followed by 4-weeks of breathing 11% O2. Compared to WT control mice, Ndufs4-/- mice breathing air have reduced brain O2 consumption as evidenced by an elevated partial pressure of O2 in IJV blood (PijvO2) despite a normal PO2 in arterial blood, and higher lactate/pyruvate (L/P) ratios in IJV plasma revealed by metabolic profiling. In Ndufs4-/- mice, hypoxia treatment normalized the cerebral venous PijvO2 and L/P ratios, and decreased levels of nicotinate in IJV plasma. Brain concentrations of nicotinamide adenine dinucleotide (NAD+) were lower in Ndufs4-/- mice breathing air than in WT mice, but preserved at WT levels with hypoxia treatment. Although mild hypoxia (17% O2) has been shown to be an ineffective therapy for Ndufs4-/- mice, we find that when combined with nicotinic acid supplementation it provides a modest improvement in neurodegeneration and lifespan. Therapies targeting both brain hyperoxia and NAD+ deficiency may hold promise for treating Leigh syndrome.


Assuntos
Encéfalo/metabolismo , Complexo I de Transporte de Elétrons/genética , Doença de Leigh/metabolismo , NAD/genética , Oxigênio/metabolismo , Animais , Encéfalo/patologia , Hipóxia Celular/fisiologia , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Doença de Leigh/genética , Doença de Leigh/terapia , Metabolômica , Camundongos , Mitocôndrias , NAD/deficiência , Doenças Neurodegenerativas , Respiração/genética
8.
Crit Care Med ; 49(5): e500-e511, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33591017

RESUMO

OBJECTIVES: Hypercoagulability may be a key mechanism for acute organ injury and death in patients with severe coronavirus disease 2019, but the relationship between elevated plasma levels of d-dimer, a biomarker of coagulation activation, and mortality has not been rigorously studied. We examined the independent association between d-dimer and death in critically ill patients with coronavirus disease 2019. DESIGN: Multicenter cohort study. SETTING: ICUs at 68 hospitals across the United States. PATIENTS: Critically ill adults with coronavirus disease 2019 admitted to ICUs between March 4, 2020, and May 25, 2020, with a measured d-dimer concentration on ICU day 1 or 2. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The primary exposure was the highest normalized d-dimer level (assessed in four categories: < 2×, 2-3.9×, 4-7.9×, and ≥ 8× the upper limit of normal) on ICU day 1 or 2. The primary endpoint was 28-day mortality. Multivariable logistic regression was used to adjust for confounders. Among 3,418 patients (63.1% male; median age 62 yr [interquartile range, 52-71 yr]), 3,352 (93.6%) had a d-dimer concentration above the upper limit of normal. A total of 1,180 patients (34.5%) died within 28 days. Patients in the highest compared with lowest d-dimer category had a 3.11-fold higher odds of death (95% CI, 2.56-3.77) in univariate analyses, decreasing to a 1.81-fold increased odds of death (95% CI, 1.43-2.28) after multivariable adjustment for demographics, comorbidities, and illness severity. Further adjustment for therapeutic anticoagulation did not meaningfully attenuate this relationship (odds ratio, 1.73; 95% CI, 1.36-2.19). CONCLUSIONS: In a large multicenter cohort study of critically ill patients with coronavirus disease 2019, higher d-dimer levels were independently associated with a greater risk of death.


Assuntos
COVID-19/sangue , COVID-19/mortalidade , Estado Terminal/mortalidade , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , SARS-CoV-2 , Idoso , Biomarcadores/sangue , COVID-19/fisiopatologia , Estudos de Coortes , Feminino , Mortalidade Hospitalar , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Trombofilia , Estados Unidos/epidemiologia
9.
Am J Respir Crit Care Med ; 203(5): 575-584, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876469

RESUMO

Rationale: Obesity is characterized by elevated pleural pressure (Ppl) and worsening atelectasis during mechanical ventilation in patients with acute respiratory distress syndrome (ARDS).Objectives: To determine the effects of a lung recruitment maneuver (LRM) in the presence of elevated Ppl on hemodynamics, left and right ventricular pressure, and pulmonary vascular resistance. We hypothesized that elevated Ppl protects the cardiovascular system against high airway pressure and prevents lung overdistension.Methods: First, an interventional crossover trial in adult subjects with ARDS and a body mass index ≥ 35 kg/m2 (n = 21) was performed to explore the hemodynamic consequences of the LRM. Second, cardiovascular function was studied during low and high positive end-expiratory pressure (PEEP) in a model of swine with ARDS and high Ppl (n = 9) versus healthy swine with normal Ppl (n = 6).Measurements and Main Results: Subjects with ARDS and obesity (body mass index = 57 ± 12 kg/m2) after LRM required an increase in PEEP of 8 (95% confidence interval [95% CI], 7-10) cm H2O above traditional ARDS Network settings to improve lung function, oxygenation and [Formula: see text]/[Formula: see text] matching, without impairment of hemodynamics or right heart function. ARDS swine with high Ppl demonstrated unchanged transmural left ventricular pressure and systemic blood pressure after the LRM protocol. Pulmonary arterial hypertension decreased (8 [95% CI, 13-4] mm Hg), as did vascular resistance (1.5 [95% CI, 2.2-0.9] Wood units) and transmural right ventricular pressure (10 [95% CI, 15-6] mm Hg) during exhalation. LRM and PEEP decreased pulmonary vascular resistance and normalized the [Formula: see text]/[Formula: see text] ratio.Conclusions: High airway pressure is required to recruit lung atelectasis in patients with ARDS and class III obesity but causes minimal overdistension. In addition, patients with ARDS and class III obesity hemodynamically tolerate LRM with high airway pressure.Clinical trial registered with www.clinicaltrials.gov (NCT02503241).


Assuntos
Atelectasia Pulmonar , Síndrome do Desconforto Respiratório , Choque , Animais , Hemodinâmica/fisiologia , Humanos , Obesidade/complicações , Respiração com Pressão Positiva/métodos , Síndrome do Desconforto Respiratório/terapia , Suínos
10.
Anesthesiology ; 134(2): 189-201, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33331902

RESUMO

BACKGROUND: Despite evidence suggesting detrimental effects of perioperative hyperoxia, hyperoxygenation remains commonplace in cardiac surgery. Hyperoxygenation may increase oxidative damage and neuronal injury leading to potential differences in postoperative neurocognition. Therefore, this study tested the primary hypothesis that intraoperative normoxia, as compared to hyperoxia, reduces postoperative cognitive dysfunction in older patients having cardiac surgery. METHODS: A randomized double-blind trial was conducted in patients aged 65 yr or older having coronary artery bypass graft surgery with cardiopulmonary bypass. A total of 100 patients were randomized to one of two intraoperative oxygen delivery strategies. Normoxic patients (n = 50) received a minimum fraction of inspired oxygen of 0.35 to maintain a Pao2 above 70 mmHg before and after cardiopulmonary bypass and between 100 and 150 mmHg during cardiopulmonary bypass. Hyperoxic patients (n = 50) received a fraction of inspired oxygen of 1.0 throughout surgery, irrespective of Pao2 levels. The primary outcome was neurocognitive function measured on postoperative day 2 using the Telephonic Montreal Cognitive Assessment. Secondary outcomes included neurocognitive function at 1, 3, and 6 months, as well as postoperative delirium, mortality, and durations of mechanical ventilation, intensive care unit stay, and hospital stay. RESULTS: The median age was 71 yr (interquartile range, 68 to 75), and the median baseline neurocognitive score was 17 (16 to 19). The median intraoperative Pao2 was 309 (285 to 352) mmHg in the hyperoxia group and 153 (133 to 168) mmHg in the normoxia group (P < 0.001). The median Telephonic Montreal Cognitive Assessment score on postoperative day 2 was 18 (16 to 20) in the hyperoxia group and 18 (14 to 20) in the normoxia group (P = 0.42). Neurocognitive function at 1, 3, and 6 months, as well as secondary outcomes, were not statistically different between groups. CONCLUSIONS: In this randomized controlled trial, intraoperative normoxia did not reduce postoperative cognitive dysfunction when compared to intraoperative hyperoxia in older patients having cardiac surgery. Although the optimal intraoperative oxygenation strategy remains uncertain, the results indicate that intraoperative hyperoxia does not worsen postoperative cognition after cardiac surgery.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Cuidados Intraoperatórios/métodos , Oxigenoterapia/métodos , Oxigênio/metabolismo , Complicações Cognitivas Pós-Operatórias/epidemiologia , Idoso , Método Duplo-Cego , Feminino , Seguimentos , Avaliação Geriátrica , Humanos , Tempo de Internação/estatística & dados numéricos , Estudos Longitudinais , Masculino , Índice de Gravidade de Doença , Tempo
11.
Crit Care Explor ; 2(4): e0106, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32426748

RESUMO

Prolonged mechanical ventilation promotes diaphragmatic atrophy and weaning difficulty. The study uses a novel device containing a transvenous phrenic nerve stimulating catheter (Lungpacer IntraVenous Electrode Catheter) to stimulate the diaphragm in ventilated patients. We set out to determine the feasibility of temporary transvenous diaphragmatic neurostimulation using this device. DESIGN: Multicenter, prospective open-label single group feasibility study. SETTING: ICUs of tertiary care hospitals. PATIENTS: Adults on mechanical ventilation for greater than or equal to 7 days that had failed two weaning trials. INTERVENTIONS: Stimulation catheter insertion and transvenous diaphragmatic neurostimulation therapy up to tid, along with standard of care. MEASUREMENTS AND MAIN RESULTS: Primary outcomes were successful insertion and removal of the catheter and safe application of transvenous diaphragmatic neurostimulation. Change in maximal inspiratory pressure and rapid shallow breathing index were also evaluated. Eleven patients met all entry criteria with a mean mechanical ventilation duration of 19.7 days; nine underwent successful catheter insertion. All nine had successful mapping of one or both phrenic nerves, demonstrated diaphragmatic contractions during therapy, and underwent successful catheter removal. Seven of nine met successful weaning criteria. Mean maximal inspiratory pressure increased by 105% in those successfully weaned (mean change 19.7 ± 17.9 cm H2O; p = 0.03), while mean rapid shallow breathing index improved by 44% (mean change -63.5 ± 64.4; p = 0.04). CONCLUSIONS: The transvenous diaphragmatic neurostimulation system is a feasible and safe therapy to stimulate the phrenic nerves and induce diaphragmatic contractions. Randomized clinical trials are underway to compare it to standard-of-care therapy for mechanical ventilation weaning.

12.
Crit Care ; 24(1): 4, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31937345

RESUMO

BACKGROUND: Limited data exist regarding ventilation in patients with class III obesity [body mass index (BMI) > 40 kg/m2] and acute respiratory distress syndrome (ARDS). The aim of the present study was to determine whether an individualized titration of mechanical ventilation according to cardiopulmonary physiology reduces the mortality in patients with class III obesity and ARDS. METHODS: In this retrospective study, we enrolled adults admitted to the ICU from 2012 to 2017 who had class III obesity and ARDS and received mechanical ventilation for > 48 h. Enrolled patients were divided in two cohorts: one cohort (2012-2014) had ventilator settings determined by the ARDSnet table for lower positive end-expiratory pressure/higher inspiratory fraction of oxygen (standard protocol-based cohort); the other cohort (2015-2017) had ventilator settings determined by an individualized protocol established by a lung rescue team (lung rescue team cohort). The lung rescue team used lung recruitment maneuvers, esophageal manometry, and hemodynamic monitoring. RESULTS: The standard protocol-based cohort included 70 patients (BMI = 49 ± 9 kg/m2), and the lung rescue team cohort included 50 patients (BMI = 54 ± 13 kg/m2). Patients in the standard protocol-based cohort compared to lung rescue team cohort had almost double the risk of dying at 28 days [31% versus 16%, P = 0.012; hazard ratio (HR) 0.32; 95% confidence interval (CI95%) 0.13-0.78] and 3 months (41% versus 22%, P = 0.006; HR 0.35; CI95% 0.16-0.74), and this effect persisted at 6 months and 1 year (incidence of death unchanged 41% versus 22%, P = 0.006; HR 0.35; CI95% 0.16-0.74). CONCLUSION: Individualized titration of mechanical ventilation by a lung rescue team was associated with decreased mortality compared to use of an ARDSnet table.


Assuntos
Obesidade/mortalidade , Síndrome do Desconforto Respiratório/mortalidade , APACHE , Adulto , Idoso , Índice de Massa Corporal , Estudos de Coortes , Feminino , Humanos , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Obesidade/epidemiologia , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/epidemiologia , Estudos Retrospectivos
13.
Nat Genet ; 51(11): 1580-1587, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31659325

RESUMO

Aortic calcification is an important independent predictor of future cardiovascular events. We performed a genome-wide association meta-analysis to determine SNPs associated with the extent of abdominal aortic calcification (n = 9,417) or descending thoracic aortic calcification (n = 8,422). Two genetic loci, HDAC9 and RAP1GAP, were associated with abdominal aortic calcification at a genome-wide level (P < 5.0 × 10-8). No SNPs were associated with thoracic aortic calcification at the genome-wide threshold. Increased expression of HDAC9 in human aortic smooth muscle cells promoted calcification and reduced contractility, while inhibition of HDAC9 in human aortic smooth muscle cells inhibited calcification and enhanced cell contractility. In matrix Gla protein-deficient mice, a model of human vascular calcification, mice lacking HDAC9 had a 40% reduction in aortic calcification and improved survival. This translational genomic study identifies the first genetic risk locus associated with calcification of the abdominal aorta and describes a previously unknown role for HDAC9 in the development of vascular calcification.


Assuntos
Aterosclerose/patologia , Predisposição Genética para Doença , Histona Desacetilases/metabolismo , Histona Desacetilases/fisiologia , Contração Muscular , Músculo Liso Vascular/patologia , Proteínas Repressoras/metabolismo , Proteínas Repressoras/fisiologia , Calcificação Vascular/patologia , Idoso , Animais , Aorta/metabolismo , Aorta/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Estudos de Coortes , Feminino , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Estudo de Associação Genômica Ampla , Histona Desacetilases/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Músculo Liso Vascular/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Proteínas Repressoras/genética , Calcificação Vascular/genética , Calcificação Vascular/metabolismo
14.
Circulation ; 139(6): 815-827, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30586713

RESUMO

BACKGROUND: The biological effects of nitric oxide are mediated via protein S-nitrosylation. Levels of S-nitrosylated protein are controlled in part by the denitrosylase, S-nitrosoglutathione reductase (GSNOR). The objective of this study was to examine whether GSNOR inhibition improves outcomes after cardiac arrest and cardiopulmonary resuscitation (CA/CPR). METHODS: Adult wild-type C57BL/6 and GSNOR-deleted (GSNOR-/-) mice were subjected to potassium chloride-induced CA and subsequently resuscitated. Fifteen minutes after a return of spontaneous circulation, wild-type mice were randomized to receive the GSNOR inhibitor, SPL-334.1, or normal saline as placebo. Mortality, neurological outcome, GSNOR activity, and levels of S-nitrosylated proteins were evaluated. Plasma GSNOR activity was measured in plasma samples obtained from post-CA patients, preoperative cardiac surgery patients, and healthy volunteers. RESULTS: GSNOR activity was increased in plasma and multiple organs of mice, including brain in particular. Levels of protein S-nitrosylation were decreased in the brain 6 hours after CA/CPR. Administration of SPL-334.1 attenuated the increase in GSNOR activity in brain, heart, liver, spleen, and plasma, and restored S-nitrosylated protein levels in the brain. Inhibition of GSNOR attenuated ischemic brain injury and improved survival in wild-type mice after CA/CPR (81.8% in SPL-334.1 versus 36.4% in placebo; log rank P=0.031). Similarly, GSNOR deletion prevented the reduction in the number of S-nitrosylated proteins in the brain, mitigated brain injury, and improved neurological recovery and survival after CA/CPR. Both GSNOR inhibition and deletion attenuated CA/CPR-induced disruption of blood brain barrier. Post-CA patients had higher plasma GSNOR activity than did preoperative cardiac surgery patients or healthy volunteers ( P<0.0001). Plasma GSNOR activity was positively correlated with initial lactate levels in postarrest patients (Spearman correlation coefficient=0.48; P=0.045). CONCLUSIONS: CA and CPR activated GSNOR and reduced the number of S-nitrosylated proteins in the brain. Pharmacological inhibition or genetic deletion of GSNOR prevented ischemic brain injury and improved survival rates by restoring S-nitrosylated protein levels in the brain after CA/CPR in mice. Our observations suggest that GSNOR is a novel biomarker of postarrest brain injury as well as a molecular target to improve outcomes after CA.


Assuntos
Aldeído Oxirredutases/antagonistas & inibidores , Benzoatos/uso terapêutico , Parada Cardíaca/terapia , Coração/efeitos dos fármacos , Pirimidinonas/uso terapêutico , Aldeído Oxirredutases/genética , Animais , Benzoatos/farmacologia , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Oxirredução , Pirimidinonas/farmacologia , Ressuscitação , Resultado do Tratamento
15.
Arterioscler Thromb Vasc Biol ; 39(2): 178-187, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30587002

RESUMO

Objective- Inflammatory stimuli enhance the progression of atherosclerotic disease. Inflammation also increases the expression of hepcidin, a hormonal regulator of iron homeostasis, which decreases intestinal iron absorption, reduces serum iron levels and traps iron within macrophages. The role of macrophage iron in the development of atherosclerosis remains incompletely understood. The objective of this study was to investigate the effects of hepcidin deficiency and decreased macrophage iron on the development of atherosclerosis. Approach and Results- Hepcidin- and LDL (low-density lipoprotein) receptor-deficient ( Hamp-/-/ Ldlr-/-) mice and Hamp+/+/ Ldlr-/- control mice were fed a high-fat diet for 21 weeks. Compared with control mice, Hamp-/-/ Ldlr-/- mice had decreased aortic macrophage activity and atherosclerosis. Because hepcidin deficiency is associated with both increased serum iron and decreased macrophage iron, the possibility that increased serum iron was responsible for decreased atherosclerosis in Hamp-/-/ Ldlr-/- mice was considered. Hamp+/+/ Ldlr-/- mice were treated with iron dextran so as to produce a 2-fold increase in serum iron. Increased serum iron did not decrease atherosclerosis in Hamp+/+/ Ldlr-/- mice. Aortic macrophages from Hamp-/-/ Ldlr-/- mice had less labile free iron and exhibited a reduced proinflammatory (M1) phenotype compared with macrophages from Hamp+/+/ Ldlr-/- mice. THP1 human macrophages treated with an iron chelator were used to model hepcidin deficiency in vitro. Treatment with an iron chelator reduced LPS (lipopolysaccharide)-induced M1 phenotypic expression and decreased uptake of oxidized LDL. Conclusions- In summary, in a hyperlipidemic mouse model, hepcidin deficiency was associated with decreased macrophage iron, a reduced aortic macrophage inflammatory phenotype and protection from atherosclerosis. The results indicate that decreasing hepcidin activity, with the resulting decrease in macrophage iron, may prove to be a novel strategy for the treatment of atherosclerosis.


Assuntos
Aterosclerose/etiologia , Hepcidinas/fisiologia , Animais , Aterosclerose/prevenção & controle , Feminino , Hepcidinas/deficiência , Ferro/sangue , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de LDL/fisiologia
17.
J Exp Biol ; 221(Pt 13)2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29748216

RESUMO

Weddell and elephant seals are deep-diving mammals, which rely on lung collapse to limit nitrogen absorption and prevent decompression injury. Repeated collapse and re-expansion exposes the lungs to multiple stressors, including ischemia-reperfusion, alveolar shear stress and inflammation. There is no evidence, however, that diving damages pulmonary function in these species. To investigate potential protective strategies in deep-diving seals, we examined the inflammatory response of seal whole blood exposed to lipopolysaccharide (LPS), a potent endotoxin. Interleukin-6 (IL6) cytokine production elicited by LPS exposure was 50 to 500 times lower in blood of healthy northern elephant seals and Weddell seals compared with that of healthy human blood. In contrast to the ∼6× increased production of IL6 protein from LPS-exposed Weddell seal whole blood, isolated Weddell seal peripheral blood mononuclear cells, under standard cell culture conditions using medium supplemented with fetal bovine serum (FBS), produced a robust LPS response (∼300×). Induction of Il6 mRNA expression as well as production of IL6, IL8, IL10, KC-like and TNFα were reduced by substituting FBS with an equivalent amount of autologous seal serum. Weddell seal serum also attenuated the inflammatory response of RAW 267.4 mouse macrophage cells exposed to LPS. Cortisol level and the addition of serum lipids did not impact the cytokine response in cultured cells. These data suggest that seal serum possesses anti-inflammatory properties, which may protect deep divers from naturally occurring inflammatory challenges such as dive-induced hypoxia-reoxygenation and lung collapse.


Assuntos
Anti-Inflamatórios/imunologia , Citocinas/metabolismo , Imunidade Inata , Lipopolissacarídeos/farmacologia , Focas Verdadeiras/imunologia , Soro/imunologia , Animais , Anti-Inflamatórios/sangue , Mergulho/fisiologia , Feminino , Leucócitos/imunologia , Masculino , Focas Verdadeiras/sangue , Especificidade da Espécie
18.
PLoS One ; 13(4): e0196697, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29698509

RESUMO

AIMS: Atrial natriuretic peptide (ANP), secreted primarily by atrial cardiomyocytes, decreases blood pressure by raising cyclic 3',5'-guanosine monophosphate (cGMP) levels and inducing vasorelaxation, natriuresis, and diuresis. Raising the level of ANP has been shown to be an effective treatment for hypertension. To advance the future development of an anti-microRNA (miR) approach to increasing expression of ANP, we investigated the regulation of NPPA expression by two miRs: miR-425 and miR-155. We examined whether miR-425 and miR-155 have an additive effect on the expression and function of ANP. METHODS AND RESULTS: Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) were transfected with miR-425, miR-155, or a combination of the two miRs. Two days later, NPPA expression was measured using real time qPCR. Each of the miRs decreased NPPA expression over a wide range of concentrations, with a significant reduction at concentrations as low as 1 nM. The combination of miR-425 and miR-155 reduced NPPA expression to a greater extent than either miR-425 or miR-155 alone. An in vitro assay was developed to study the potential biological significance of the miR-induced decrease in NPPA expression. The cooperative effect of miR-425 and miR-155 on NPPA expression was associated with a significant decrease in cGMP levels. CONCLUSIONS: These data demonstrate that miR-425 and miR-155 regulate NPPA expression in a cooperative manner. Targeting both miRNAs with anti-miRs (possibly at submaximal concentrations) might prove to be a more effective strategy to modulate ANP levels, and thus blood pressure, than targeting either miRNA alone.


Assuntos
Fator Natriurético Atrial/metabolismo , GMP Cíclico/metabolismo , MicroRNAs/metabolismo , Animais , Fator Natriurético Atrial/genética , Células COS , Linhagem Celular , Chlorocebus aethiops , Células-Tronco Embrionárias Humanas/citologia , Humanos , MicroRNAs/genética , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Transfecção
19.
Anesthesiology ; 127(1): 121-135, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28430694

RESUMO

BACKGROUND: Perioperative and critically ill patients are often exposed to iron (in the form of parenteral-iron administration or blood transfusion) and inflammatory stimuli, but the effects of iron loading on the inflammatory response are unclear. Recent data suggest that mitochondrial reactive oxygen species have an important role in the innate immune response and that increased mitochondrial reactive oxygen species production is a result of dysfunctional mitochondria. We tested the hypothesis that increased intracellular iron potentiates lipopolysaccharide-induced inflammation by increasing mitochondrial reactive oxygen species levels. METHODS: Murine macrophage cells were incubated with iron and then stimulated with lipopolysaccharide. C57BL/6 wild-type mice were intraperitoneally injected with iron and then with lipopolysaccharide. Markers of inflammation and mitochondrial superoxide production were examined. Mitochondrial homeostasis (the balance between mitochondrial biogenesis and destruction) was assessed, as were mitochondrial mass and the proportion of nonfunctional to total mitochondria. RESULTS: Iron loading of mice and cells potentiated the inflammatory response to lipopolysaccharide. Iron loading increased mitochondrial superoxide production. Treatment with MitoTEMPO, a mitochondria-specific antioxidant, blunted the proinflammatory effects of iron loading. Iron loading increased mitochondrial mass in cells treated with lipopolysaccharide and increased the proportion of nonfunctional mitochondria. Iron loading also altered mitochondrial homeostasis to favor increased production of mitochondria. CONCLUSIONS: Acute iron loading potentiates the inflammatory response to lipopolysaccharide, at least in part by disrupting mitochondrial homeostasis and increasing the production of mitochondrial superoxide. Improved understanding of iron homeostasis in the context of acute inflammation may yield innovative therapeutic approaches in perioperative and critically ill patients.


Assuntos
Homeostase/fisiologia , Inflamação/fisiopatologia , Complexo Ferro-Dextran/administração & dosagem , Lipopolissacarídeos/metabolismo , Mitocôndrias/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Modelos Animais de Doenças , Inflamação/metabolismo , Complexo Ferro-Dextran/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
20.
Crit Ultrasound J ; 9(1): 10, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28429291

RESUMO

BACKGROUND: Non-invasive measures that can accurately estimate cardiac output may help identify volume-responsive patients. This study seeks to compare two non-invasive measures (corrected carotid flow time and carotid blood flow) and their correlations with invasive reference measurements of cardiac output. Consenting adult patients (n = 51) at Massachusetts General Hospital cardiac catheterization laboratory undergoing right heart catheterization between February and April 2016 were included. Carotid ultrasound images were obtained concurrently with cardiac output measurements, obtained by the thermodilution method in the absence of severe tricuspid regurgitation and by the Fick oxygen method otherwise. Corrected carotid flow time was calculated as systole time/√cycle time. Carotid blood flow was calculated as π × (carotid diameter)2/4 × velocity time integral × heart rate. Measurements were obtained using a single carotid waveform and an average of three carotid waveforms for both measures. RESULTS: Single waveform measurements of corrected flow time did not correlate with cardiac output (ρ = 0.25, 95% CI -0.03 to 0.49, p = 0.08), but an average of three waveforms correlated significantly, although weakly (ρ = 0.29, 95% CI 0.02-0.53, p = 0.046). Carotid blood flow measurements correlated moderately with cardiac output regardless of if single waveform or an average of three waveforms were used: ρ = 0.44, 95% CI 0.18-0.63, p = 0.004, and ρ = 0.41, 95% CI 0.16-0.62, p = 0.004, respectively. CONCLUSIONS: Carotid blood flow may be a better marker of cardiac output and less subject to measurements issues than corrected carotid flow time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA