Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mult Scler J Exp Transl Clin ; 9(4): 20552173231211396, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38021451

RESUMO

Background: Imaging investigation of cerebrospinal fluid (CSF) in multiple sclerosis (MS) is understudied. Development of noninvasive methods to detect pathological CSF changes would have a profound effect on MS diagnosis and would offer insight into MS pathophysiology and mechanisms of neurological impairment. Objective: We propose magnetization transfer (MT) MRI as a tool to detect macromolecular changes in spinal CSF. Methods: MT and quantitative MT (qMT) data were acquired in the cervical region in 27 people with relapsing-remitting multiple sclerosis (pwRRMS) and 38 age and sex-matched healthy controls (HCs). MT ratio (MTR), the B1, B0, and R1 corrected qMT-derived pool size ratio (PSR) were quantified in the spinal cord and CSF of each group. Results: Both CSF MTR and CSF qMT-derived PSR were significantly increased in pwRRMS compared to HC (p = 0.027 and p = 0.020, respectively). CSF PSR of pwRRMS was correlated to Expanded Disability Status Scale Scores (p = 0.045, R = 0.352). Conclusion: Our findings demonstrate increased CSF macromolecular content in pwRRMS and link CSF macromolecular content with clinical impairment. This highlights the potential role of CSF in processing products of demyelination.

2.
NMR Biomed ; 31(4): e3894, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29388719

RESUMO

The purpose of this work was to evaluate the feasibility and reproducibility of the spherical mean technique (SMT), a multi-compartmental diffusion model, in the spinal cord of healthy controls, and to assess its ability to improve spinal cord characterization in multiple sclerosis (MS) patients at 3 T. SMT was applied in the cervical spinal cord of eight controls and six relapsing-remitting MS patients. SMT provides an elegant framework to model the apparent axonal volume fraction vax , intrinsic diffusivity Dax , and extra-axonal transverse diffusivity Dex_perp (which is estimated as a function of vax and Dax ) without confounds related to complex fiber orientation distribution that reside in diffusion MRI modeling. SMT's reproducibility was assessed with two different scans within a month, and SMT-derived indices in healthy and MS cohorts were compared. The influence of acquisition scheme on SMT was also evaluated. SMT's vax , Dax , and Dex_perp measurements all showed high reproducibility. A decrease in vax was observed at the site of lesions and normal appearing white matter (p < 0.05), and trends towards a decreased Dax and increased Dex_perp were seen. Importantly, a twofold reduction in acquisition yielded similarly high accuracy with SMT. SMT provides a fast, reproducible, and accurate method to improve characterization of the cervical spinal cord, and may have clinical potential for MS patients.


Assuntos
Medula Cervical/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Adulto , Estudos de Coortes , Humanos , Esclerose Múltipla/diagnóstico por imagem , Reprodutibilidade dos Testes
3.
Magn Reson Med ; 79(2): 806-814, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28474409

RESUMO

PURPOSE: The ability to evaluate pathological changes in the spinal cord in multiple sclerosis (MS) is limited because T1 - and T2 -w MRI imaging are not sensitive to biochemical changes in vivo. Amide proton transfer (APT) chemical exchange saturation transfer (CEST) can indirectly detect amide protons associated with proteins and peptides, potentially providing more pathological specificity. Here, we implement APT CEST in the cervical spinal cord of healthy and MS cohorts at 3T. METHODS: APT CEST of the cervical spinal cord was obtained in a cohort of 10 controls and 10 MS patients using a novel respiratory correction methodology. APT was quantified using two methods: 1) APTw , based off the conventional magnetization transfer ratio asymmetry, and 2) ΔAPT, a spatial characterization of APT changes in MS patients relative to the controls. RESULTS: Respiratory correction yielded highly reproducible z-spectra in white matter (intraclass correlation coefficient = 0.82). APTw signals in normal-appearing white matter (NAWM) of MS patients were significantly different from healthy controls (P = 0.04), whereas ΔAPT of MS patients highlighted large APT differences in NAWM. CONCLUSION: Respiration correction in the spinal cord is necessary to accurately quantify APT CEST, which can provide unique biochemical information regarding disease processes within the spinal cord. Magn Reson Med 79:806-814, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Medula Cervical/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Adulto , Amidas , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prótons , Substância Branca/diagnóstico por imagem , Adulto Jovem
4.
Neuroimage Clin ; 15: 333-342, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28560158

RESUMO

INTRODUCTION: There is a need to develop imaging methods sensitive to axonal injury in multiple sclerosis (MS), given the prominent impact of axonal pathology on disability and outcome. Advanced multi-compartmental diffusion models offer novel indices sensitive to white matter microstructure. One such model, neurite orientation dispersion and density imaging (NODDI), is sensitive to neurite morphology, providing indices of apparent volume fractions of axons (vin), isotropic water (viso) and the dispersion of fibers about a central axis (orientation dispersion index, ODI). NODDI has yet to be studied for its sensitivity to spinal cord pathology. Here, we investigate the feasibility and utility of NODDI in the cervical spinal cord of MS patients. METHODS: NODDI was applied in the cervical spinal cord in a cohort of 8 controls and 6 MS patients. Statistical analyses were performed to test the sensitivity of NODDI-derived indices to pathology in MS (both lesion and normal appearing white matter NAWM). Diffusion kurtosis imaging (DKI) and diffusion tensor imaging (DTI) analysis were also performed to compare with NODDI. RESULTS: A decrease in NODDI-derived vin was observed at the site of the lesion (p < 0.01), whereas a global increase in ODI was seen throughout white matter (p < 0.001). DKI-derived mean kurtosis (MK) and radial kurtosis (RK) and DTI-derived fractional anisotropy (FA) and radial diffusivity (RD) were all significantly different in MS patients (p < 0.02), however NODDI provided higher contrast between NAWM and lesion in all MS patients. CONCLUSION: NODDI provides unique contrast that is not available with DKI or DTI, enabling improved characterization of the spinal cord in MS.


Assuntos
Medula Cervical/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Neuritos , Adulto , Imagem de Difusão por Ressonância Magnética/normas , Estudos de Viabilidade , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/normas , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA