Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 276, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486224

RESUMO

BACKGROUND: CLAD (Chronic Lung Allograft Dysfunction) remains a serious complication following lung transplantation. Some evidence shows that portions of Extracorporeal Photopheresis (ECP)-treated patients improve/stabilize their graft function. In spite of that, data concerning molecular mechanisms are still lacking. Aims of our study were to assess whether ECP effects are mediated by Mononuclear Cells (MNCs) modulation in term of microRNAs (miRNAs) expression and growth factors release. METHODS: Cells from leukapheresis of 16 CLAD patients, at time 0 and 6-months (10 cycles), were cultured for 48h ± PHA (10 ug/ml) or LPS (2 ug/ml). Expression levels of miR-146a-5p, miR-155-5p, miR-31-5p, miR181a-5p, miR-142-3p, miR-16-5p and miR-23b-5p in MNCs-exosomes were evaluated by qRT-PCR, while ELISA assessed different growth factors levels on culture supernatants. RESULTS: Our result showed miR-142-3p down-regulation (p = 0.02) in MNCs of ECP-patients after the 10 cycles and after LPS stimulation (p = 0.005). We also find miR-146a-5p up-regulation in cells after the 10 cycles stimulated with LPS (p = 0.03). Connective tissue growth factor (CTGF) levels significantly decreased in MNCs supernatant (p = 0.04). The effect of ECP is translated into frequency changes of Dendritic Cell (DC) subpopulations and a slight increase in T regulatory cells (Treg) number and a significant decrease in CTGF release. CONCLUSIONS: ECP might affect regulatory T cell functions, since both miR-142 and miR-146a have been shown to be involved in the regulation of suppressor regulatory T cell functions and DCs. On the other side ECP, possibly by regulating macrophage activation, is able to significantly down modulate CTGF release.


Assuntos
MicroRNAs , Fotoferese , Humanos , MicroRNAs/genética , Lipopolissacarídeos/farmacologia , Leucócitos , Regulação para Baixo/genética
2.
Biomed Pharmacother ; 162: 114640, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37004325

RESUMO

A subset of severe COVID19 patients develop pulmonary fibrosis, but the pathophysiology of this complication is still unclear. We previously described the possibility to isolate lung mesenchymal cells (LMC) by culturing broncho-alveolar lavage (BAL) cells from patients with pulmonary fibrosis or chronic lung allograft dysfunction. Aim of this study was to investigate the possibility to isolate and characterize LMC from BAL of patients that, two months after discharge for severe COVID19, show CT signs of post-COVID19 fibrosis (Post-COVID) and in some cases has been considered transplant indication. Results were compared with those from BAL of patients with collagen tissue disease-associated interstitial fibrosis (CTD-ILD). BAL fluid levels of TGFß, VEGF, TIMP2, RANTES, IL6, IL8, and PAI1 were assessed. LMC were cultured and expanded, phenotyped by flow cytometry, and tested for osteogenic and adipogenic differentiation. Finally, we tested immunomodulatory and proliferative capabilities, collagen I production + /- TGF-beta stimulation. BAL cytokine and growth factor levels were comparable in the two groups. Efficiency of isolation from BAL was 100% in post-COVID compared to 63% in CTD-ILD. LMC from post-COVID were positive for CD105, CD73, CD90, and negative for CD45, CD34, CD19 and HLA-DR as in CTD-ILD samples. Post-COVID LMC displayed higher collagen production with respect to CTD-ILD LMC. Immunomodulatory capacity towards lymphocytes was very low, while Post-COVID LMC significantly upregulated pro-inflammatory cytokine production by healthy PBMCs. Our preliminary data suggest that LMC from post-COVID19 fibrosis patients share several features with CTD-ILD ones but might have a higher response to fibrogenic signals and pro-inflammatory profile.


Assuntos
COVID-19 , Doenças Pulmonares Intersticiais , Fibrose Pulmonar , Humanos , Pulmão , Fibrose , Citocinas , Fator de Crescimento Transformador beta
3.
Transpl Int ; 36: 11551, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38282747

RESUMO

Extracorporeal photopheresis (ECP) is used by few lung transplant centers to treat chronic lung allograft dysfunction (CLAD). Although reported results suggest a beneficial effect on CLAD progression, evidence is limited to single center experiences. The aim of this study is to analyze outcomes of ECP in a large multicenter European cohort. The primary endpoint was patient survival after initiation of ECP. This study included 631 patients, 87% suffered from bronchiolitis obliterans syndrome (BOS), and 13% had restrictive allograft syndrome (RAS). Long-term stabilization was achieved in 42%, improvement in 9%, and no response in 26%. Within the first 12 months of therapy, 23% of patients died. Patients' survival after initiation of ECP at 5 years was 56% in stable, 70% in responders, and 35% in non-responders (p = 0.001). In multivariable Cox regression, both stabilization (HR: 0.48, CI: 0.27-0.86, p = 0.013) and response (HR: 0.11, CI: 0.04-0.35, p < 0.001) to ECP were associated with survival. Absolute FEV1 at baseline was also protective (HR: 0.09, CI: 0.01-0.94, p = 0.046). RAS phenotype was the only risk factor for mortality (HR: 2.11, 1.16-3.83, p = 0.006). This study provides long-term outcomes of ECP use in CLAD patients in the largest published cohort to date. Two-thirds of the cohort had a sustained response to ECP with excellent long-term results.


Assuntos
Aloenxertos , Transplante de Pulmão , Fotoferese , Humanos , Aloenxertos/fisiopatologia , Transplante de Pulmão/métodos , Fotoferese/métodos , Estudos de Coortes
4.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498905

RESUMO

Antisynthetase syndrome (ASSD) is an autoimmune disease characterized by the positivity of autoantibodies against different aminoacyl transfer RNA (tRNA) synthetases. Morbidity and mortality of this disease are highly affected by interstitial lung disease (ILD) which is present in about 80% of patients. In this study, we investigated possible differences in 84 immune-related circulating miRNAs between ASSD patients with and without ILD; we enrolled 15 ASSD patients, 11 with ILD (ILD+) and 4 without ILD (ILD-), and 5 patients with idiopathic pulmonary fibrosis (IPF) as an additional control group. All patients were at disease onset and not on therapy at the time of inclusion. Differentially expressed miRNAs were identified in plasma-derived exosomes, using an miRNA PCR array (MIHS-111ZG, Qiagen, Hilden, Germany); miR-30a-5p and miR-29c-3p were upregulated in ASSD-ILD patients compared to patients without lung involvement (adjusted p-value < 0.05). IPF patients showed higher miR-29c-3p expression levels with respect to both ASSD and ASSD-ILD (p = 0.0005), whereas levels of miR-30a-5p were not different. miR-29c-3p and miR-30a-5p are overexpressed in ASSD-ILD+ patients compared with ILD−. These miRNAs are involved in the regulation of inflammation and fibrosis through their action on NF-κB and TGF-ß1. Although the mechanistic role of these miRNAs in ASSD-ILD development has to be elucidated, we suggest that their exosome levels could be useful in identifying patients at risk of ILD.


Assuntos
Exossomos , Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , MicroRNAs , Miosite , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças Pulmonares Intersticiais/genética , Exossomos/genética , Exossomos/metabolismo , Fibrose Pulmonar Idiopática/complicações , Fibrose Pulmonar Idiopática/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA