RESUMO
BACKGROUND: Ornithine (Orn) plays an essential role in the metabolism of plant cells through incorporation in polyamines biosynthesis, the urea cycle and nitrogen metabolism. Physiological response of the plant cells to its two enantiomers have not been widely investigated yet. OBJECTIVES: This study aimed to evaluate effect of ornithine enantiomers on expression of certain polyamine (PAs) biosynthetic genes in tobacco cells. MATERIALS AND METHODS: Suspension-cultured tobacco cells were treated with different concentrations of L- and D- Orn for 24 h. Cell viability was assayed by Evans Blue and hydrogen peroxide content. The changes of gene expression were analyzed by semi-quantitative RT-PCR. RESULTS: Exogenous D-Orn resulted in enhancement of expression of genes involved in Orn, arginine and S-adenosyl methionine metabolism. Additionally, exogenous D-Orn treatment resulted in sustained viability of cultured tobacco cells and normal levels of hydrogen peroxide were maintained. Supplied L-Orn increased the hydrogen peroxide level and lowered viability of cells. Treatment with L-Orn had a negative effect on the transcript levels for most analyzed PA-related genes. It was also illustrated that transcription of putrescine methyl transferase, key enzyme for nicotine production, was highly upregulated by L-Orn. CONCLUSIONS: Based on the results, D-Orn was shown to have a stereo-selective function in regulation of the PAs-related genes.
RESUMO
Lignans are structurally and functionally diverse phytochemicals biosynthesized in diverse plant species and have received wide attentions as leading compounds of novel drugs for tumor treatment and healthy diets to reduce of the risks of lifestyle-related non-communicable diseases. However, the lineage-specific distribution and the low-amount of production in natural plants, some of which are endangered species, hinder the efficient and stable production of beneficial lignans. Accordingly, the development of new procedures for lignan production is of keen interest. Recent marked advances in the molecular and functional characterization of lignan biosynthetic enzymes and endogenous and exogenous factors for lignan biosynthesis have suggested new methods for the metabolic engineering of lignan biosynthesis cascades leading to the efficient, sustainable, and stable lignan production in plants, including plant cell/organ cultures. Optimization of light conditions, utilization of a wide range of elicitor treatments, and construction of transiently gene-transfected or transgenic lignan-biosynthesizing plants are mainly being attempted. This review will present the basic and latest knowledge regarding metabolic engineering of lignans based on their biosynthetic pathways and biological activities, and the perspectives in lignan production via metabolic engineering.