Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(14): 16458-16468, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617684

RESUMO

The limited solubility of graphene in water can be attributed to the existence of π-π bonds connecting its layers. Functionalized graphene or graphene oxide (GO) is frequently produced in order to overcome the shortcomings of graphene. Using density functional theory (DFT) calculation, functionalized graphene with various combinations of hydroxyl, epoxy, and carboxylic functional groups were investigated computationally. The study focused on the effects of functional group combinations on the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies, giving information about the chemical reactivity and stability of the molecules under investigation. Global chemical reactivity descriptors, including chemical hardness, softness, electronegativity, chemical potential, and electrophilicity index, were calculated to further elucidate the overall stability and reactivity of the molecules. The results demonstrated that the introduction of oxygen-containing functional groups on graphene significantly influenced its electronic properties, leading to variations in the chemical reactivity and stability. Molecular electrostatic potential (MEP) maps highlighted the susceptibility of specific regions to electrophilic and nucleophilic attacks. The flexibility and stability of functionalized graphene through root mean square fluctuation (RMSF) and root mean square deviation (RMSD) analyses indicate the stability of functionalized graphene in water. This comprehensive computational investigation provides valuable insights into the design and understanding of functionalized graphene for potential applications in drug delivery.

2.
ACS Omega ; 8(45): 42976-42986, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024669

RESUMO

The exclusive properties of ionic liquids (ILs) offer various opportunities to develop advanced materials with appreciable therapeutic applications. Imidazolium-based ILs have been frequently used as reaction media and stabilizers for the development and surface functionalization of noble metal nanoparticles (NPs). This study reports the citrate-mediated reduction of silver ions in three different ILs, that is, 1-ethyl-3-methylimidazolium methyl sulfate ([EMIM][MS]), 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([BMIM][OTf]), and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][TFSI]). The resulting Ag-ILs NPs were characterized using many analytical techniques, including UV-visible spectroscopy, dynamic light scattering (DLS), scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction (XRD). DLS and XRD characterization revealed the negatively charged Ag-[EMIM][MS] NPs, Ag-[BMIM][OTf] NPs, and Ag-[BMIM][TFSI] NPs with mean hydrodynamic sizes of 278, 316, and 279 nm, respectively, and a face-centered cubic structure. These hybrid nanomaterials were subjected to in vitro antibacterial screening against three bacterial strains. The Ag-[BMIM][OTf] NPs exhibited significant activities against Escherichia coli, Staphylococcus aureus, and Enterobacter cloacae. The lowest inhibition concentration of 62.5 µg/mL was recorded against E. coli using Ag-[EMIM][MS] and Ag-[BMIM][OTf] NPs. Further, the density functional theory calculations carried out on the computed Ag-ILs in the gas phase and water showed relatively stable systems. Ag-[BMIM][TFSI] exhibited the lowest Gibbs free energy change of -34.41 kcal/mol. The value of the global electrophilicity index (ω = 0.1865 eV) for the Ag-[BMIM][OTf] correlated with its good antibacterial activity.

3.
Sci Total Environ ; 858(Pt 1): 159672, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306838

RESUMO

Graphene oxide is a two-dimensional carbon nanomaterial and has gained huge popularity over the last decade. Because, the graphene oxide can be dispersed in water easily and it is one of the most researched two-dimensional materials in the current time. The extraordinary properties shown by graphene oxide (GO) are due to its unique chemical structure; includes various hydrophilic functional groups containing oxygen such as carboxyl, hydroxyl, carbonyl and tiny sp2 carbon domains surrounded by sp3 domains. These groups are very peculiar for various applications as they allow covalent functionalisation with a plethora of compounds. Large surface area, intrinsic fluorescence, excellent surface functionality, amphiphilicity, improved conductivity, high adsorption capacity and superior biocompatibility are some of the chemical properties have drawn research from various fields. Graphene oxide has various interactions such as coordination, chelation, hydrogen bonding, electrostatic interaction, hydrophobic effects, π-π interaction, acid base interaction etc., with various metal ions. This review is focused on the removal of metals and metal ions due to their interactions mentioned above. Further, potential of composites of graphene oxide in the removal of metal and metal ions is also discussed. Further, the current challenges in this field at industrial-scale are also discussed.


Assuntos
Grafite , Metais Pesados , Poluentes Químicos da Água , Metais Pesados/química , Poluentes Químicos da Água/análise , Grafite/química , Adsorção , Íons , Carbono
4.
ACS Omega ; 7(40): 35387-35445, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36249372

RESUMO

Graphene oxide (GO) has attracted much attention in the past few years because of its interesting and promising electrical, thermal, mechanical, and structural properties. These properties can be altered, as GO can be readily functionalized. Brodie synthesized the GO in 1859 by reacting graphite with KClO3 in the presence of fuming HNO3; the reaction took 3-4 days to complete at 333 K. Since then, various schemes have been developed to reduce the reaction time, increase the yield, and minimize the release of toxic byproducts (NO2 and N2O4). The modified Hummers method has been widely accepted to produce GO in bulk. Due to its versatile characteristics, GO has a wide range of applications in different fields like tissue engineering, photocatalysis, catalysis, and biomedical applications. Its porous structure is considered appropriate for tissue and organ regeneration. Various branches of tissue engineering are being extensively explored, such as bone, neural, dentistry, cartilage, and skin tissue engineering. The band gap of GO can be easily tuned, and therefore it has a wide range of photocatalytic applications as well: the degradation of organic contaminants, hydrogen generation, and CO2 reduction, etc. GO could be a potential nanocarrier in drug delivery systems, gene delivery, biological sensing, and antibacterial nanocomposites due to its large surface area and high density, as it is highly functionalized with oxygen-containing functional groups. GO or its composites are found to be toxic to various biological species and as also discussed in this review. It has been observed that superoxide dismutase (SOD) and reactive oxygen species (ROS) levels gradually increase over a period after GO is introduced in the biological systems. Hence, GO at specific concentrations is toxic for various species like earthworms, Chironomus riparius, Zebrafish, etc.

5.
J Biomol Struct Dyn ; 40(4): 1607-1616, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33073705

RESUMO

Chikungunya virus (CHIKV) belongs to the alpha virus and it's infection in humans causes fever, known as chikungunya fever (CHIKF). It is a sudden onset of fever and may affect humans badly. The mode of transmission to human occurs due to the biting of the mosquitoes. Till date, thousands of humans are affected from this virus throughout the world. As on date, no promising medicine or vaccine is available in the market to cure from this viral infection. Therefore, there is a need of promising candidate against the nsp3 of CHIKV. In the present work, a library of the compounds are designed based on the product obtained in a multi-component reaction. Then, the designed compounds are filtered based on binding energy against the nsp3 of CHIKV obtained using molecular docking. Further, to understand the interaction of nsp3 of CHIKV and screened compound, CMPD474, the molecular dynamics (MD) simulations at different temperatures, that is, 300, 325, 350, 375, and 400 K is performed. The binding or the formation of the complex is studied through different trajectories obtained from MD simulations. The accurate information for the binding energy is determined by performing MM-GBSA calculations and the best inhibition was observed at 300 K as the change in free energy for the formation of the complex is -7.0523 kcal/mol.Communicated by Ramaswamy H. Sarma.


Assuntos
Vírus Chikungunya , Animais , Vírus Chikungunya/química , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Tiazolidinas , Proteínas não Estruturais Virais/química , Replicação Viral
6.
ACS Omega ; 7(51): 47471-47489, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36591120

RESUMO

Amino acid-surfactant interactions are central to numerous studies because of their increased effectiveness in chemical, biological, household and industrial use. This review will focus on the impact and effect of the physicochemical properties, temperature, pH, and surfactant chain length of the amino acid for detailed exploration of amino acids and surfactants in aqueous medium. The impact of cosolvent on self-aggregation, critical micelle concentration (CMC), and binding affinity with other biomolecules, as well as amino acid-surfactant interactions, are the epicenters. The results show that increasing the temperature causes negative enthalpy for ionic surfactants and micellization, implying that micellization and amino acids are thermodynamically spontaneous and exothermic, accompanied by positive entropy. As these physicochemical studies are additive, the amino acid and ionic surfactant interactions provide clues on protein unfolding and denaturation under different media, which further changes with a change in physiological conditions like pH, cosolvent, chain length, and temperature. On varying the pH, the net charge of the amino acid also changes and, subsequently, the binding efficiency of the amino acids to the surfactants. The presence of cosolvent causes a lowering in the hydrophobic chain, which changes the surfactant's CMC. At a reduced CMC, the hydrophobic characteristic of amino acid-surfactant associations is amplified, leading to rapid denaturation of proteins that act as propulsion under the influence of extended chain surfactants. Amino acids are one of the most intriguing classes of chemicals that produce high inhibitory efficacy. Amino acids are also a component of proteins and therefore, found in a significant part of the human body, further making them a promising candidate as corrosion inhibitors. In this review article, authors have also focused on the collection and investigation for application of amino acid-surfactant interactions in corrosion inhibition. Various predictive studies/in silico studies are also reported by many research groups, such as density functional theory (DFT) calculations and molecular dynamics simulations to obtain tentative electronic, structural, and physiochemical characteristics like energies of the highest occupied molecular orbitals and lowest unoccupied molecular orbitals, binding energy, Gibb's free energy, electronegativity, polarizability, and entropy. In silico studies are helpful for the mechanism predictions of the process occurring on metal surfaces.

7.
J Biomol Struct Dyn ; 40(13): 5827-5835, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33472563

RESUMO

Infection due to the Chikungunya virus (CHIKV) has taken the life of lots of people; and researchers are working to find the vaccine or promisng drug candidates against this viral infection. In this work, the authors have designed one component reaction based on the thia-/oxa-azolidineone and created a library of 2000 molecules based on the product obtained. Further, the compounds were screened through the docking using iGemdock against the non-structural protein 2 (nsp2) of CHIKV. Molecular docking gives the binding energy (BE) or energy for the formation of the complex between the designed compound and nsp2 of CHIKV; and CMPD222 gave the lowest energy. This is based on the energy obtained from van der Waal's interaction, hydrogen bonding and electrostatic instructions. Further, molecular dynamics simulations (MDS) of nsp2 of CHIKV with and without screened compound (222) were performed to validate the docking results and the change in free energy for the formation of the complex is -10.8327 kcal/mol. To explore the potential of CMPD222, the MDS of the CMPD222-nsp2 of CHIKV were performed at different temperatures (325, 350, 375 and 400 K) to understand the inhibition of the protease. MM-GBSA calculations were performed to determined change in entropy, change in enthalpy and change in free energy to understand the inhibition. Maximum inhibition of nsp2 of CHIKV with CMPD222 is observed at 375 K with a change in free energy of -19.3754 kcal/mol.Communicated by Ramaswamy H. Sarma.


Assuntos
Vírus Chikungunya , Vírus Chikungunya/química , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Temperatura , Termodinâmica
8.
J Mol Struct ; 1251: 131965, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-34840349

RESUMO

SARS-CoV-2 is drastically spread across the globe in a short period of time and affects the lives of billions. There is a need to find the promising drugs like candidates against the inhibition of novel corona virus or SARS-CoV-2. Herein, the interaction on sex hormones (testosterone and progesterone) with Mpro of SARS-CoV-2 was investigated with the help of molecular docking. The binding energy for the formation complex between the progesterone and testosterone with main protease of SARS-CoV-2 are -86.05 and -91.84 kcal/mol, respectively. From this, it can be understood that testosterone showed better binding affinity with Mpro of nCoV and thus, more inhibition of the main protease. Then, the binding was further studied using molecular dynamics simulations at different temperatures (300, 310 and 325) K. It has been observed that the formations of complex between the Mpro of nCoV with testosterone/ progesterone is better at 300 K than 310 and 325 K. Further, it is found that the more effective binding of testosterone with Mpro of nCoV is observed than the progesterone based on the RMSD, RMSF and H-bond trajectories. Results indicate the promising nature of testosterone towards the inhibition of Mpro of nCoV.

9.
J Mol Struct ; 1250: 131924, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34803185

RESUMO

There is great interest to explore the importance of different amino-acids on immunity of human. Immunity helps to protect us from the pathogenic infections. The amino-acids are being use to give energy and is also used as an important basic molecule for the making of cells, protecting cell and others. Still, a little information is known for their importance in the inhibition of main protease of SARS-CoV-2. As known, tens of billions of humans are infected due to the SARS-CoV-2 and about a million of deaths are reported due to it or COVID. As of now, no promising drug is available in the market to cure the patients from this infection. Even, the medicines beings used for the partial cure may have some side effects. Therefore, the focus is to explore the natural amino-acids against the Mpro of SARS-CoV-2 as using of amino-acids is not toxic to humans. In the present work, authors have studied the amino-acids using DFT calculations and then they were explored for their promising role in the inhibition of main protease of SARS-CoV-2 using molecular docking and molecular dynamics simulations. Out of the 20 amino-acids, arginine found to best against the main protease of SARS-CoV-2 using the molecular docking and the binding energy was -0.94 kcal/ mol. Further, molecular dynamics simulations for the main protease of SARS-CoV-2 with and without arginine was performed using the Amber and different thermodynamic parameters like ΔH and TΔS to get ΔG, comes out to be 2.74 kcal/mol. It is expected that arginine can boost the immunity.

10.
J Phys Org Chem ; 34(12): e4273, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34511718

RESUMO

Hormones like testosterone and progesterone in the humans play significant role in the regulation of various biological processes like the body growth, reproduction, and others. In last two decades, researchers are using ionic liquids (ILs) extensively in different areas of sciences, and they are a novel class of compounds as well as their polarity can be tuned. ILs are multidisciplinary in nature and can be used in chemistry, materials science, chemical engineering, and environmental science. Further, ILs are being explored to increase the solubility of drugs or biological potential molecules. Testosterone and progesterone are found to be not very polar in nature; therefore, the authors attempt to increase the solubility of testosterone and progesterone via interaction with ILs. It was studied with density functional theory calculations using Gaussian, and an increase in the value of dipole moment is observed for the complex of testosterone/progesterone with the ILs in comparison of individual one. The optimization energy and other thermodynamic energies of the ILs (IL1-IL3), testosterone (T), testosterone-IL (T-IL1 to T-IL3), progesterone (P), and progesterone-ILs (P-IL1 to P-IL3) are found to be negative. Further, the change in free energy for the formation of complexes at room temperature is calculated. Further, the authors have investigated the synergistic effect of testosterone and progesterone against the main protease of new coronavirus using molecular docking. It is observed that the testosterone-IL1 {IL1-3-(2-hydroxyethyl)-1-methyl-1H-imidazol-3-ium 2,4,6-trinitrophenolate} is found to be prominent against the main protease of SARS-CoV-2.

11.
J Mol Liq ; 335: 116185, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33879934

RESUMO

Now a days, more than 200 countries faces the health crisis due to epidemiological disease COVID-19 caused by SARS-CoV-2 virus. It will cause a very high impact on world's economy and global health sector. Earlier the structure of main protease (Mpro) protein was deposited in the RCSB protein repository. Hydroxychloroquine (HCQ) and remdesivir were found to effective in treatment of COVID-19 patients. Here we have performed docking and molecule dynamic (MD) simulation study of HCQ and remdesivir with Mpro protein which gave promising results to inhibit Mpro protein in SARS-CoV-2. On the basis of results obtained we designed structurally modified 18 novel derivatives of HCQ, remdesivir and tetrahydrocannabinol (THC) and carried out docking studies of all the derivatives. From the docking studies six molecules DK4, DK7, DK10, DK16, DK17 and DK19 gave promising results and can be use as inhibitor for Mpro of SARS-CoV-2 to control COVID-19 very effectively. Further, molecular dynamics simulation of one derivative of HCQ and one derivative of tetrahydrocannabinol showing excellent docking score was performed along with the respective parent molecules. The two derivatives gave excellent docking score and higher stability than the parent molecule as validated with molecular dynamics (MD) simulation for the binding affinities towards Mpro of SARS-CoV-2 thus represented as strong inhibitors at very low concentration.

12.
Comput Toxicol ; 16: 100140, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33102987

RESUMO

In December 2019, the SARS-CoV-2 was reported for the first time and the infected person is reported at Wuhan, China. Till date, about twenty four million people around the world are infected due to the SARS-CoV-2. The structure of this corona virus is new and different from other corona viruses. The genome has a positive sense single RNA strand and it is responsible for the encoding of the protein. The protease of the SARS-CoV-2 is responsible for the cleavage and therefore, it should be targeted to develop medicine. Till date, no medicine or vaccine is in the market to cure from the infection. Researchers around the world are working on the development of efficacious and safe vaccine/ drug to cure from the infection. Therefore, the authors used previously synthesized compounds, xanthene-triazole-chloroquinoline/ xanthene-chloroquinoline hybrids for the inhibition of the main protease of the SARS-CoV-2 via using computational tools, molecular docking and ADMET properties. COMD AP3 was found to be the best candidate from the library of the designed molecules. It has acceptable solubility along with the distribution and metabolism property. ADMET results corroborate the docking result towards the potency of COMP AP3.

13.
Phys Chem Chem Phys ; 22(26): 14811-14821, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32578619

RESUMO

Ionic liquid (IL)-protein interaction studies are well documented; nonetheless, some families of ILs possess high toxicity which leads to the perturbation of biomolecules. However, ILs can be suitably designed by tweaking the constituent ions and also by amalgamating the mixture that stabilises the protein against the denaturing effect of another IL. To address this, the present study has explored the role of IL mixtures in imparting structural stability to protein ß-lactoglobulin (ß-LG). Previously, it was demonstrated that choline iodide ([Chn][I]) had an adverse effect on the native structure of ß-LG. In order to counteract the deleterious action of [Chn][I], four IL mixtures (choline acetate [Chn][Ac] + [Chn][I] (MCACI); choline bitartrate [Chn][Bit] + [Chn][I] (MCBCI); choline chloride [Chn][Cl] + [Chn][I] (MCCCI); and choline dihydrogenphosphate [Chn][Dhp] + [Chn][I] (MCDCI)) were prepared in different ratios and their effects on the structural stability of ß-LG were investigated. The UV-visible and fluorescence spectroscopy results revealed that ß-LG achieved conformational changes with the addition of aqueous solutions containing mixtures of these ILs as compared to [Chn][I] alone. In near UV-CD spectroscopy, we observed that these four mixtures of ILs preserved the structure of ß-LG by maintaining the tertiary structure. The dynamic light scattering (DLS) results demonstrated that the aqueous solutions containing IL mixtures decreased the dH values of ß-LG, eventually keeping the compact structure of ß-LG. These results confirm that the four biocompatible IL mixtures reduce the unavoidable aggregates of ß-LG in the presence of [Chn][I]. Additionally, from the thermal fluorescence analysis, it was observed that the thermal stability of ß-LG was enhanced by the four IL mixtures, thus counteracting the deleterious effect of [Chn][I] on ß-LG. To the best of our knowledge, this work for the first time has demonstrated the role of choline-based IL mixtures in the structural transition of ß-LG. The IL mixtures successfully enhanced the stability of the protein by reducing the perturbation caused by one of the components of the IL mixtures, thus amplifying the advantages of the other components. Overall, these results might find implications for understanding the role of IL mixtures towards protein folding/unfolding and pave a new direction for the development of eco-friendly protein-protective additives.


Assuntos
Colina/química , Líquidos Iônicos/química , Lactoglobulinas/química , Difusão Dinâmica da Luz , Conformação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos
14.
J Phys Chem B ; 122(46): 10435-10444, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30359021

RESUMO

Enzymes are very important components which are vital for the existence of every cellular life. There is significant interest in the use of structurally stable and catalytically active enzymes in pharmaceutical, food, fine chemicals industries, and in various industrial processes as catalysts. Stem bromelain (BM) is a proteolytic enzyme which is widely used in chemical, medical, and pharmaceutical fields. However, harsh process conditions are the main barriers to the effective use of this enzyme in different applications. To overcome these drawbacks, biocompatible bio-based ionic liquids (ILs), composed of the choline cation (an essential nutrient) and different anions are used. The ILs namely choline chloride [Ch]+[Cl]-, choline acetate [Ch]+[Ac]-, choline dihydrogen phosphate [Ch]+[Dhp]-, choline bitartrate [Ch]+[Bit]-, choline iodide [Ch]+[I]-, and choline hydroxide [Ch]+[OH]- are chosen for the current work. Therefore, in the present study, structural stability and activity of BM have been evaluated in the presence of choline-based ILs using various biophysical techniques at different concentrations. The present work demonstrated that [Ch]+[OH]- is the strongest destabilizer, whereas [Ch]+[Cl]- is the best stabilizer for the native structure of BM among all studied ILs. This work revealed the suitability of some choline-based ILs as potential media for sustained stability and activity of BM.


Assuntos
Bromelaínas/química , Colina/química , Líquidos Iônicos/química , Ânions/química , Estabilidade Enzimática
15.
Environ Sci Pollut Res Int ; 25(36): 36412-36424, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30368711

RESUMO

Imbalanced potassium (K) fertilization in agricultural fields has led to considerable negative impacts and remains to be the foremost challenge for maize production in India-Gangetic region. Plant growth-promoting rhizobacteria, particularly potassium solubilizing rhizobacteria (KSR), could serve as inoculants and a promising strategy for enhancement of plant absorption of K hence reducing dependency on chemical fertilizers. Maize seeds were microbiolized for 30 min with KSR suspensions. In the present study, the use of chemical fertilizers along with Agrobacterium tumefaciens strain OPVS10 showed pronounced beneficial effect on growth and yield attributes in maize. There was a significant difference among different parameters studied when varying doses of K and KSR strains were applied. Results showed that the combined application of KSR strain OPVS10 with 100% RDK (recommended dose of K) was most effective in modulating growth, physio-biochemical, and yield attributes in maize thus could be regarded as a promising alternative to mineral K-fertilization. Principal component analysis (PCA) revealed that 100-grain weight and grain yield were the most important properties to improve the sustainable growth of maize. Therefore, these KSR strains have different mechanisms for modulating various activities in maize plants. Results suggested that the synergistic application of KSR strain OPVS10 with 100% RDK can be used for optimized breeding, screening, and nutrient assimilation in maize crop. Hence, this eco-friendly approach may be one of the efficient methods for reducing dependency on chemicals, which pose adverse effects on human health directly and indirectly.


Assuntos
Agrobacterium tumefaciens/fisiologia , Fertilizantes , Potássio/farmacocinética , Microbiologia do Solo , Zea mays/crescimento & desenvolvimento , Disponibilidade Biológica , Germinação , Índia , Potássio/administração & dosagem , Potássio/química , Análise de Componente Principal , Rizosfera , Sementes/crescimento & desenvolvimento , Solo/química
16.
ACS Omega ; 3(4): 4679-4687, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458689

RESUMO

Fourier transform infrared spectroscopy (FT-IR) has been employed to obtain information about the nature of interactions in the liquid solutions of pure solvents and their mixtures of m-chlorotoluene (MCT) with 1-alkanol systems at different mole fractions. Furthermore, densities (ρ) and speeds of sound (u) of binary mixtures of MCT with a set of five 1-alkanols, namely, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, and 1-heptanol, were measured as a function of composition at 298.15 K. From the experimental quantities, the excess volumes (V E), isentropic compressibility (k s), and excess isentropic compressibility (k s E) were calculated for the binary mixtures over the entire composition range and under the atmospheric pressure. These excess properties (V E) and (k s E) were correlated with the Redlich-Kister polynomial equation. Additionally, theoretical density functional theory calculations and natural bond orbital analyses were carried out to further discern the nature and strength of interactions between MCT and 1-alkanols. Moreover, the recorded FT-IR spectra-derived excess properties and quantum chemically derived data revealed the presence of interactions between component molecules in binary liquid solutions.

17.
J Phys Chem B ; 120(49): 12584-12595, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27973830

RESUMO

The present study investigates the effects of the alkyl chain length of the cationic head-group of some ammonium-based ionic liquids (ILs) (having the same anion) on the interaction between the ILs and N,N-dimethylacetamide (DMA). The molecular interactions between the studied ILs, tetraethylammonium hydroxide (TEAH), tetrapropylammonium hydroxide (TPAH), tetrabutylammonium hydroxide (TBAH), and their binary mixtures with DMA were studied using the Fourier transform infrared spectroscopy (FTIR) technique, dynamic light scattering (DLS) experiments, and quantum chemical calculations. It was observed from both experimental FTIR analysis and theoretical studies that the strength of intermolecular interactions, such as hydrogen bonding, ion-ion interactions, and induced dipole interactions, between the ILs and DMA depends on the alkyl chain length of the IL cation head-group. The interaction of DMA with IL is energetically favorable and occurs via direct interactions between the IL anion and the carbonyl oxygen of DMA. The results further revealed that the shorter the alkyl chain length of the cationic head-group of the ILs, the stronger the interaction with the DMA molecule, such that the strength of interactions between the ILs and DMA follows the order TEAH > TPAH > TBAH. This trend can be attributed to the increased self-organized aggregation with increasing alkyl chain length of the IL cation.

18.
Sci Rep ; 6: 30937, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27515383

RESUMO

Polyurethane based tri-block copolymers namely poly(N-vinylpyrrolidone)-b-polyurethane-b-poly(N-vinylpyrrolidone) (PNVP-PU) and poly(dimethylaminoethylmethacrylate)-b-polyurethane-b-poly(dimethylaminoethylmethacrylate) (PDMAEMA-PU) were synthesized through atom transfer radical polymerization (ATRP) mechanism. The synthesized polymers were characterized using nuclear magnetic resonance (NMR) spectroscopy and gel permeation chromatography (GPC) methods. The corrosion inhibition performances of the compounds were investigated on mild steel (MS) in 0.5 M H2SO4 medium using electrochemical measurements, surface analysis, quantum chemical calculations and molecular dynamic simulations (MDS). Potentiodynamic polarization (PDP) measurements revealed that the polymers are mixed-type corrosion inhibitors. Electrochemical impedance spectroscopy (EIS) measurements showed that the polymers inhibit MS corrosion by adsorbing on MS surface to form pseudo-capacitive interface. The inhibitive effects of the polymers increase with increasing concentration and decrease with increasing temperature. The adsorption of both the polymers on MS surface obey the Langmuir adsorption isotherm and involves both physisorption and chemisorption mechanisms. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses showed that the polymers formed protective film on MS surface and shield it from direct acid attack. Quantum chemical calculations and molecular dynamic simulations studies corroborate experimental results.

19.
Phys Chem Chem Phys ; 18(12): 8278-326, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26947211

RESUMO

In view of the spacious scope of structural information and the molecular interactions between ammonium-based ionic liquids (ILs) and molecular solvents in various applications including chemical and pharmaceutical that are crucial for all aspects of scientific community, the knowledge of the molecular mechanisms, in particular, the thermodynamic basis of the structure-breaking/making interactions as well as the packing effect of the molecular liquids is essential to understand the ion-ion and ion-solvent interactions that exist in the liquid mixtures. In this perspective, we describe how the thermodynamic parameters can be effectively used to gain valuable insights into molecular interactions between ammonium-based ILs and molecular solvents, which would be most useful in various industries. This perspective presents the thermophysical properties of pure ammonium-based ILs, then these properties of the mixtures of these ILs with other solvents, and reviews the correlation researches on the properties of these systems. Finally, this perspective also brings a brief overview on several studies accomplished in this area by various researchers.

20.
Molecules ; 20(9): 15701-34, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26343626

RESUMO

The effects of seven macrocyclic compounds comprising four phthalocyanines (Pcs) namely 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (Pc1), 2,3,9,10,16,17,23,24-octakis(octyloxy)-29H,31H-phthalocyanine (Pc2), 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (Pc3) and 29H,31H-phthalocyanine (Pc4), and three naphthalocyanines namely 5,9,14,18,23,27,32,36-octabutoxy-2,3-naphthalocyanine (nPc1), 2,11,20,29-tetra-tert-butyl-2,3-naphthalocyanine (nPc2) and 2,3-naphthalocyanine (nP3) were investigated on the corrosion of aluminium (Al) in 1 M HCl using a gravimetric method, potentiodynamic polarization technique, quantum chemical calculations and quantitative structure activity relationship (QSAR). Synergistic effects of KI on the corrosion inhibition properties of the compounds were also investigated. All the studied compounds showed appreciable inhibition efficiencies, which decrease with increasing temperature from 30 °C to 70 °C. At each concentration of the inhibitor, addition of 0.1% KI increased the inhibition efficiency compared to the absence of KI indicating the occurrence of synergistic interactions between the studied molecules and I(-) ions. From the potentiodynamic polarization studies, the studied Pcs and nPcs are mixed type corrosion inhibitors both without and with addition of KI. The adsorption of the studied molecules on Al surface obeys the Langmuir adsorption isotherm, while the thermodynamic and kinetic parameters revealed that the adsorption of the studied compounds on Al surface is spontaneous and involves competitive physisorption and chemisorption mechanisms. The experimental results revealed the aggregated interactions between the inhibitor molecules and the results further indicated that the peripheral groups on the compounds affect these interactions. The calculated quantum chemical parameters and the QSAR results revealed the possibility of strong interactions between the studied inhibitors and metal surface. QSAR analysis on the quantum chemical parameters obtained with B3LYP/6-31G (d,p) method show that a combination of two quantum chemical parameters to form a composite index provides the best correlation with the experimental data.


Assuntos
Alumínio/química , Ácido Clorídrico/química , Indóis/química , Iodetos/química , Porfirinas/química , Corrosão , Eletroquímica , Íons/química , Relação Quantitativa Estrutura-Atividade , Teoria Quântica , Soluções , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA