Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Chem ; 16(6): 979-987, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38429344

RESUMO

Electrolysers offer an appealing technology for conversion of CO2 into high-value chemicals. However, there are few tools available to track the reactions that occur within electrolysers. Here we report an electrolysis optical coherence tomography platform to visualize the chemical reactions occurring in a CO2 electrolyser. This platform was designed to capture three-dimensional images and videos at high spatial and temporal resolutions. We recorded 12 h of footage of an electrolyser containing a porous electrode separated by a membrane, converting a continuous feed of liquid KHCO3 to reduce CO2 into CO at applied current densities of 50-800 mA cm-2. This platform visualized reactants, intermediates and products, and captured the strikingly dynamic movement of the cathode and membrane components during electrolysis. It also linked CO production to regions of the electrolyser in which CO2 was in direct contact with both membrane and catalyst layers. These results highlight how this platform can be used to track reactions in continuous flow electrochemical reactors.

2.
ACS Nano ; 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599026

RESUMO

Piezoelectric nanogenerators (PENGs) provide a viable solution to convert the mechanical energy generated by body movement to electricity. One-dimensional yarns offer a platform for flexible wearable textile PENGs, which can conform to body for comfort and efficient energy harvesting. In this context, we report a flexible piezoelectric yarn, assembled by one-step cocentric deposition of cesium lead halide perovskite decorated polyvinylidene fluoride (PVDF) nanofibers, on a stainless-steel yarn. Perovskite crystals were formed in situ during electrospinning. Our work demonstrates a nanofiber morphology in which perovskite crystals spread over the nanofiber, leading to a rough surface, and complementing piezoelectric nanocomposite formation with PVDF for superior stress excitation. We investigated how the halide anions of perovskite affect the piezoelectric performance of PENG yarns by comparing CsPbBr3 and CsPbI2Br. Effects of the perovskite concentration, annealing temperature, and deposition time on the piezoelectric properties of PENG yarns were investigated. Devices assembled with a single yarn of CsPbI2Br decorated PVDF nanofibers yield the optimal performance with an output voltage of 8.3 V and current of 1.91 µA in response to pressing from an actuator and used to charge capacitors for powering electronics. After aging in the ambient environment for 3 months, the device maintained its performance during 19,200 cycles of mechanical stresses. The excellent and stable electrical performance can be ascribed to the optimized crystallization of CsPbI2Br crystals, their complementing performance with PVDF, and formation of nanofibers with uniformity and strength. The flexibility of piezoelectric yarns enables them to be bent, twisted, braided, and woven for different textile integrations while harvesting energy from body movements, demonstrating the potential for wearable mechanical energy harvesting.

3.
Small ; 18(8): e2107186, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35092137

RESUMO

The potassium-ion battery (PIB) is an emerging energy storage technology due to its potential low cost and reasonably high energy density. However, PIB suffers from severe potassium (K) dendrites growth and even short circuiting caused by the high reactivity of K metal. To address these challenges, this work develops a robust composite gel polymer electrolyte (CGPE), named poly(vinylidene fluoride-hexafluoropropylene) potassium bis(fluorosulfonyl)imide polyacrylonitrile (PVDF-HFP-KFSI@PAN). It is found that the introduction of PAN nanofibers not only improves the mechanical properties but also widens the electrochemical stability window of the CGPE. As a result, the CGPE is much more effective in regulating K stripping/plating and enabling stable K metal anode. K metal symmetrical cells with CGPE exhibit a lifetime of over 1200 h at the current density of 0.5 mA cm-2 , in contrast to 22 h for PVDF-HFP-KFSI and 185 h for a conventional glass fiber separator. The main reasons for the excellent performance of K metal cells with CGPE are attributed to the suppressed K dendrite growth, good structural integrity electrochemical stability of the CGPE, and stable KF-rich solid electrolyte interphase layer at the electrode-CGPE interface. It is expected that this facile strategy to stabilize K metal will pave the way for safer and more durable K metal batteries.

4.
J Hazard Mater ; 421: 126769, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34388924

RESUMO

Surface hydroxyl is widely perceived as conducive to HCHO degradation. Here, a kind of sodium titanate with interlayered hydroxyls (NaTi2HO5) was prepared to study the action conditions of surface hydroxyls in HCHO oxidation. The nanotubes mainly exposing (001) and nanobelts mainly exposing (100) are synthesized as the two morphologies of NaTi2HO5. We found the (001) facet is much more favored to HCHO adsorption via HRTEM and XPS analysis. The DFT calculations prove that the synergy of surface hydroxyl and Na atom is perfect for HCHO chemisorption. By this means NaTi2HO5 nanotubes can partially oxidize HCHO into formate and release very few CO, measured by in situ DRIFTS. Dominated by Pt nanoparticles, the complete oxidation of HCHO can be performed on NaTi2HO5 nanotubes with enhanced early reaction speed. Rather than simple surface hydroxyl, the effective synergy of hydroxyl and positive ion is proposed as an advantage for HCHO oxidation.

5.
Chemosphere ; 275: 130087, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33676279

RESUMO

In the present study, a magnetic core-shell metal-organic framework (Fe3O4@PAA@UiO-66-NH2) nanocomposite was synthesized by a facile step-by-step self-assembly technique and used for selective adsorption of the anti-cancer Quercetin (QCT) drug. The synthesized nanocomposite was well characterized using FTIR, XRD, BET, FESEM, and TEM techniques. The adsorption kinetics and isotherms of the magnetic nanocomposites for QCT were investigated in detail at different initial concentrations and temperatures. It was found that the experimental adsorption kinetic and isotherm data were precisely explained by the pseudo-second-order kinetic and Langmuir isotherm models. Moreover, the selective adsorption ability of the synthesized nanocomposite against various drugs in the single, binary, and ternary solutions containing QCT, Curcumin (CUR), and Methotrexate (MTX) drugs was also studied. The synthesized adsorbent showed good adsorption selectivity for QCT against CUR and MTX. The adsorption mechanism of QCT on the nanocomposite might be related to the hydrogen bonding and hydrophobic-hydrophobic interactions via π-π stacking interactions between the benzene ring skeleton of QCT and the aromatic structure of the adsorbent nanoparticles. The regeneration and reusability studies demonstrated that the developed adsorbent sustained good structural stability and adequate adsorption capacity for QCT after ten consecutive adsorption-desorption cycles.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Adsorção , Cinética , Fenômenos Magnéticos , Magnetismo , Quercetina
6.
Molecules ; 26(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498227

RESUMO

Blending lignin as the second most abundant polymer in Nature with nanostructured compounds such as dendritic polymers can not only add value to lignin, but also increase its application in various fields. In this study, softwood Kraft lignin/polyamidoamine dendritic polymer (PAMAM) blends were fabricated by the solution electrospinning to produce bead-free nanofiber mats for the first time. The mats were characterized through scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, zeta potential, and thermogravimetry analyses. The chemical intermolecular interactions between the lignin functional groups and abundant amino groups in the PAMAM were verified by FTIR and viscosity measurements. These interactions proved to enhance the mechanical and thermal characteristics of the lignin/PAMAM mats, suggesting their potential applications e.g. in membranes, filtration, controlled release drug delivery, among others.


Assuntos
Lignina/química , Nanofibras/química , Nanoestruturas/química , Polímeros/química , Varredura Diferencial de Calorimetria , Dendrímeros/química , Microscopia Eletrônica de Varredura , Soluções/química , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
7.
Int J Biol Macromol ; 173: 351-365, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33450340

RESUMO

Pectin has been regarded as a drug carrier accelerating the healing process due to its bioactivities, abundance and lower cost of resources. However, a big challenge related to its practical application is its poor mechanical strength. In this study the modified Cu-based MOF containing Folic acid was synthesized and incorporated in the suitable pectin electrospun nanofibers which not only improved the copper ions release behavior but also made the fiber mat stronger, antibacterial and induce angiogenesis, fibroblast migration, and proliferation due to loaded copper ions and folic acid. The nanofibers composing of 75% pectin and 4000 kDa -PEO were chosen after morphological and mechanical characterization. Finally, the effect of MOF incorporation on the nanocomposite samples was characterized in terms of morphological, physiochemical and biological properties. The nanofibrous mats were evaluated by tensile testing, antibacterial and cytotoxicity. The release behavior of copper ions and folic acid was controlled and their burst release alleviated reducing cytotoxicity in vitro. It was found that the Young's moduli of the pectin nanofibers were improved to 19.13 MPa by the addition of Cu-based MOFs. Moreover, nanocomposite pectin nanofibers were found to be antibacterial and biocompatible. These results demonstrate that MOF-contained pectin nanofibers are promising for biomedical applications.


Assuntos
Antibacterianos/farmacologia , Cobre/farmacologia , Ácido Fólico/farmacologia , Estruturas Metalorgânicas/farmacologia , Pectinas/química , Animais , Antibacterianos/química , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citrus/química , Cobre/química , Sistemas de Liberação de Medicamentos , Módulo de Elasticidade , Escherichia coli/efeitos dos fármacos , Ácido Fólico/química , Estruturas Metalorgânicas/química , Camundongos , Nanocompostos , Nanofibras , Tamanho da Partícula , Staphylococcus aureus/efeitos dos fármacos
8.
Chemosphere ; 264(Pt 2): 128466, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33065327

RESUMO

Ethylenediamine-functionalized Zr-based metal-organic framework (MOF, UiO-66-EDA) was prepared via Michael addition reaction to investigate its potential for adsorption of heavy metal ions from water. Specifically, the influence of agitation time, solution pH, the dosage of the adsorbent, initial metal ion concentration, temperature, and coexistence of other metal ions was investigated on the removal efficiency of UiO-66-EDA towards Pb(II), Cd(II), and Cu(II) metal ions. The pseudo-second-order kinetic model governed the adsorption of these ions onto the UiO-66-EDA. Langmuir isotherm model matched the experimental isotherm of adsorption with a maximum adsorption capacity of 243.90, 217.39, and 208.33 mg/g for Pb, Cd, and Cu ions, respectively. The adsorption of Pb, Cd, and Cu ions onto UiO-66-EDA was dependent on electron exchange, electron sharing, electrostatic and covalent interactions between the metal ions as well as the abundant functional groups on UiO-66-EDA surface. Thermodynamic parameters such as free energy changes (ΔG), standard enthalpy changes (ΔH), and standard entropy changes (ΔS) were calculated, which revealed spontaneous and endothermic nature of the adsorption process. The UiO-66-EDA was stable and recyclable during adsorption studies of Pb, Cd, and Cu ions, suggesting its potentiality as an adsorbent for heavy metals recovery.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Adsorção , Etilenodiaminas , Concentração de Íons de Hidrogênio , Íons , Cinética , Termodinâmica , Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA