Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37863838

RESUMO

For patients with ulcerative colitis (UC), administration of the probiotic E. coli Nissle (EcN) holds promise for alleviation of disease symptoms. The mechanisms are unclear, but it has been hypothesised that a capacity of the probiotic to outcompete potentially detrimental UC-associated E. coli strains plays an important role. However, this could previously not be confirmed in a mouse model of competition between EcN and two UC-associated strains, as reported by Petersen et al. 2011. In the present study, we re-evaluated the idea, hypothesising that delivery of EcN by a micro device dosing system (microcontainers), designed for delivery into the intestinal mucus, could support colonisation and confer a competition advantage compared to classical oral dosing. Six groups of mice were pre-colonised with one of two UC-associated E. coli strains followed by oral delivery of EcN, either in capsules containing microcontainers with freeze-dried EcN powder, capsules containing freeze-dried EcN powder, or as a fresh sucrose suspension. Co-colonisation between the probiotic and the disease-associated strains was observed regardless of dosing method, and no competition advantages linked to microcontainer delivery were identified within this setup. Other approaches are thus needed if the competitive capacity of EcN in the gut should be improved.


Assuntos
Colite Ulcerativa , Probióticos , Humanos , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Escherichia coli , Pós
2.
Environ Pollut ; 334: 122179, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37454717

RESUMO

Perfluorooctane sulfonic acid (PFOS) is a manmade legacy compound belonging to the group of persistent per- and polyfluorinated substances (PFAS). While many adverse health effects of PFOS have been identified, knowledge about its effect on the intestinal microbiota is scarce. The microbial community inhabiting the gut of mammals plays an important role in health, for instance by affecting the uptake, excretion, and bioavailability of some xenobiotic toxicants. Here, we investigated (i) the effect of vancomycin-mediated microbiota modulation on the uptake of PFOS in adult Sprague-Dawley rats, and (ii) the effects of PFOS exposure on the rat microbiota composition. Four groups of twelve rats were exposed daily for 7 days with either 3 mg/kg PFOS plus 8 mg/kg vancomycin, only PFOS, only vancomycin, or a corn oil control. Vancomycin-induced modulation of the gut microbiota composition did not affect uptake of branched and linear PFOS over a period of 7 days, measured in serum samples. 16S rRNA amplicon sequencing of faecal and intestinal samples revealed that vancomycin treatment lowered microbial alpha-diversity, while PFOS increased the microbial diversity in vancomycin-treated as well as in non-antibiotic treated animals, possibly because an observed decrease in the Enterobacteriaceae abundance allows other microbial species to propagate. Colonic short-chain fatty acids were significantly lower in vancomycin-treated animals but remained unaffected by PFOS. Our results suggest that PFOS exposure may disturb the intestinal microbiota, but that antibiotic-induced modulation of the intestinal ecosystem does not affect systemic uptake of PFOS in rats.


Assuntos
Fluorocarbonos , Microbioma Gastrointestinal , Microbiota , Ratos , Animais , Antibacterianos/toxicidade , Vancomicina/toxicidade , RNA Ribossômico 16S/genética , Ratos Sprague-Dawley , Fluorocarbonos/toxicidade , Mamíferos/genética
4.
Gut Microbes ; 14(1): 2084306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36519447

RESUMO

AbstarctIn fecal microbiota transplantation (FMT) against recurrent Clostridioides difficile infection (CDI), clinical outcomes are usually determined after 8 weeks. We hypothesized that the intestinal microbiota changes earlier than this timepoint, and analyzed fecal samples obtained 1 week after treatment from 64 patients diagnosed with recurrent CDI and included in a randomized clinical trial, where the infection was treated with either vancomycin-preceded FMT (N = 24), vancomycin (N = 16) or fidaxomicin (N = 24). In comparison with non-responders, patients with sustained resolution after FMT had increased microbial alpha diversity, enrichment of Ruminococcaceae and Lachnospiraceae, depletion of Enterobacteriaceae, more pronounced donor microbiota engraftment, and resolution of gut microbiota dysbiosis. We found that a constructed index, based on markers for the identified genera Escherichia and Blautia, successfully predicted clinical outcomes at Week 8, which exemplifies a way to utilize clinically feasible methods to predict treatment failure. Microbiota changes were restricted to patients who received FMT rather than antibiotic monotherapy, indicating that FMT confers treatment response in a different way than antibiotics. We suggest that early identification of microbial community structures after FMT is of clinical value to predict response to the treatment.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Microbioma Gastrointestinal , Humanos , Transplante de Microbiota Fecal/métodos , Clostridioides difficile/fisiologia , Vancomicina/uso terapêutico , Infecções por Clostridium/terapia , Resultado do Tratamento , Antibacterianos/uso terapêutico
5.
Sci Rep ; 12(1): 21503, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513721

RESUMO

Drug-loaded electrospun nanofibers are potential drug carrier systems that may optimize disease treatment while reducing the impact on commensal microbes. The feasibility of streptomycin-loaded pullulan nanofibers fabricated from a green electrospinning procedure using water as the solvent was assessed. We conducted a rat study including a group treated with streptomycin-loaded nanofibers (STR-F, n = 5), a group treated with similar concentrations of streptomycin in the drinking water (STR-W, n = 5), and a non-treated control group (CTR, n = 5). Streptomycin was successfully loaded into nanofibers and delivered by this vehicle, which minimized the quantity of the drug released in the ileal compartment of the gut. Ingested streptomycin-resistant E. coli colonized of up to 106 CFU/g feces, revealing a selective effect of streptomycin even when given in the low amounts allowed by the nanofiber-based delivery. 16S amplicon sequencing of the indigenous microbiota revealed differential effects in the three groups. An increase of Peptostreptococcaceae in the cecum of STR-F animals may indicate that the fermentation of nanofibers directly or indirectly promoted growth of bacteria within this family. Our results elucidate relevant properties of electrospun nanofibers as a novel vehicle for delivery of antimicrobials to the large intestine.


Assuntos
Nanofibras , Ratos , Animais , Estreptomicina/farmacologia , Escherichia coli , Portadores de Fármacos , Colo , Sistemas de Liberação de Medicamentos/métodos
6.
Microbiome ; 10(1): 193, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36352460

RESUMO

BACKGROUND: Fecal microbiota transplantation (FMT) effectively prevents the recurrence of Clostridioides difficile infection (CDI). Long-term engraftment of donor-specific microbial consortia may occur in the recipient, but potential further transfer to other sites, including the vertical transmission of donor-specific strains to future generations, has not been investigated. Here, we report, for the first time, the cross-generational transmission of specific bacterial strains from an FMT donor to a pregnant patient with CDI and further to her child, born at term, 26 weeks after the FMT treatment. METHODS: A pregnant woman (gestation week 12 + 5) with CDI was treated with FMT via colonoscopy. She gave vaginal birth at term to a healthy baby. Fecal samples were collected from the feces donor, the mother (before FMT, and 1, 8, 15, 22, 26, and 50 weeks after FMT), and the infant (meconium at birth and 3 and 6 months after birth). Fecal samples were profiled by deep metagenomic sequencing for strain-level analysis. The microbial transfer was monitored using single nucleotide variants in metagenomes and further compared to a collection of metagenomic samples from 651 healthy infants and 58 healthy adults. RESULTS: The single FMT procedure led to an uneventful and sustained clinical resolution in the patient, who experienced no further CDI-related symptoms up to 50 weeks after treatment. The gut microbiota of the patient with CDI differed considerably from the healthy donor and was characterized as low in alpha diversity and enriched for several potential pathogens. The FMT successfully normalized the patient's gut microbiota, likely by donor microbiota transfer and engraftment. Importantly, our analysis revealed that some specific strains were transferred from the donor to the patient and then further to the infant, thus demonstrating cross-generational microbial transfer. CONCLUSIONS: The evidence for cross-generational strain transfer following FMT provides novel insights into the dynamics and engraftment of bacterial strains from healthy donors. The data suggests FMT treatment of pregnant women as a potential strategy to introduce beneficial strains or even bacterial consortia to infants, i.e., neonatal seeding. Video Abstract.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Adulto , Feminino , Humanos , Recém-Nascido , Gravidez , Bactérias , Infecções por Clostridium/terapia , Infecções por Clostridium/microbiologia , Transplante de Microbiota Fecal/métodos , Fezes/microbiologia , Recidiva , Resultado do Tratamento
7.
Environ Pollut ; 305: 119340, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35460815

RESUMO

Perfluorooctanesulfonic acid (PFOS) is a persistent anthropogenic chemical that can affect the thyroid hormone system in humans and animals. In adults, thyroid hormones (THs) are regulated by the hypothalamic-pituitary-thyroid (HPT) axis, but also by organs such as the liver and potentially the gut microbiota. PFOS and other xenobiotics can therefore disrupt the TH system at various locations and through different mechanisms. To start addressing this, we exposed adult male rats to 3 mg PFOS/kg/day for 7 days and analysed effects on multiple organs and pathways simultaneously by transcriptomics. This included four primary organs involved in TH regulation, namely hypothalamus, pituitary, thyroid, and liver. To investigate a potential role of the gut microbiota in thyroid hormone regulation, two additional groups of animals were dosed with the antibiotic vancomycin (8 mg/kg/day), either with or without PFOS. PFOS exposure decreased thyroxine (T4) and triiodothyronine (T3) without affecting thyroid stimulating hormone (TSH), resembling a state of hypothyroxinemia. PFOS exposure resulted in 50 differentially expressed genes (DEGs) in the hypothalamus, 68 DEGs in the pituitary, 71 DEGs in the thyroid, and 181 DEGs in the liver. A concomitant compromised gut microbiota did not significantly change effects of PFOS exposure. Organ-specific DEGs did not align with TH regulating genes; however, genes associated with vesicle transport and neuronal signaling were affected in the hypothalamus, and phase I and phase II metabolism in the liver. This suggests that a decrease in systemic TH levels may activate the expression of factors altering trafficking, metabolism and excretion of TH. At the transcriptional level, little evidence suggests that the pituitary or thyroid gland is involved in PFOS-induced TH system disruption.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Ácidos Alcanossulfônicos/toxicidade , Animais , Fluorocarbonos/toxicidade , Masculino , Ratos , Hormônios Tireóideos/metabolismo , Transcriptoma
8.
Scand J Immunol ; 95(5): e13148, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35152475

RESUMO

The use of antibiotics as well as changes in the gut microbiota have been linked to development of food allergy in childhood. It remains unknown whether administration of a single clinically relevant antibiotic directly promotes food allergy development when administrated during the sensitisation phase in an experimental animal model. We investigated whether the antibiotic amoxicillin affected gut microbiota composition, development of cow's milk allergy (CMA) and frequencies of allergic effector cells and regulatory T cells in the intestine. Brown Norway rats were given daily oral gavages of amoxicillin for six weeks and whey protein concentrate (WPC) with or without cholera toxin three times per week for the last five weeks. Microbiota composition in faeces and small intestine was analysed by 16S rRNA sequencing. The development of CMA was assessed by WPC-specific IgE in serum, ear swelling response to WPC and body hypothermia following oral gavage of WPC. Allergic effector cells were analysed by histology, and frequencies of regulatory and activated T cells were analysed by flow cytometry. Amoxicillin administration reduced faecal microbiota diversity, reduced the relative abundance of Firmicutes and increased the abundance of Bacteroidetes and Proteobacteria. Despite these effects, amoxicillin did not affect the development of CMA, nor the frequencies of allergic effector cells or regulatory T cells. Thus, amoxicillin does not carry a direct risk for food allergy development when administrated in an experimental model of allergic sensitisation to WPC via the gut. This finding suggests that confounding factors may better explain the epidemiological link between antibiotic use and food allergy.


Assuntos
Hipersensibilidade Alimentar , Hipersensibilidade a Leite , Amoxicilina/efeitos adversos , Animais , Antibacterianos/efeitos adversos , Bovinos , Feminino , RNA Ribossômico 16S/genética , Ratos
9.
Microlife ; 3: uqac006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37223362

RESUMO

Human Milk Oligosaccharides (HMOs) are glycans with prebiotic properties known to drive microbial selection in the infant gut, which in turn influences immune development and future health. Bifidobacteria are specialized in HMO degradation and frequently dominate the gut microbiota of breastfed infants. However, some species of Bacteroidaceae also degrade HMOs, which may prompt selection also of these species in the gut microbiota. To investigate to what extent specific HMOs affect the abundance of naturally occurring Bacteroidaceae species in a complex mammalian gut environment, we conducted a study in 40 female NMRI mice administered three structurally different HMOs, namely 6'sialyllactose (6'SL, n = 8), 3-fucosyllactose (3FL, n = 16), and Lacto-N-Tetraose (LNT, n = 8), through drinking water (5%). Compared to a control group receiving unsupplemented drinking water (n = 8), supplementation with each of the HMOs significantly increased both the absolute and relative abundance of Bacteroidaceae species in faecal samples and affected the overall microbial composition analyzed by 16s rRNA amplicon sequencing. The compositional differences were mainly attributed to an increase in the relative abundance of the genus Phocaeicola (formerly Bacteroides) and a concomitant decrease of the genus Lacrimispora (formerly Clostridium XIVa cluster). During a 1-week washout period performed specifically for the 3FL group, this effect was reversed. Short-chain fatty acid analysis of faecal water revealed a decrease in acetate, butyrate and isobutyrate levels in animals supplemented with 3FL, which may reflect the observed decrease in the Lacrimispora genus. This study highlights HMO-driven Bacteroidaceae selection in the gut environment, which may cause a reduction of butyrate-producing clostridia.

10.
Exp Biol Med (Maywood) ; 247(1): 1-75, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34783606

RESUMO

There is an evolution and increasing need for the utilization of emerging cellular, molecular and in silico technologies and novel approaches for safety assessment of food, drugs, and personal care products. Convergence of these emerging technologies is also enabling rapid advances and approaches that may impact regulatory decisions and approvals. Although the development of emerging technologies may allow rapid advances in regulatory decision making, there is concern that these new technologies have not been thoroughly evaluated to determine if they are ready for regulatory application, singularly or in combinations. The magnitude of these combined technical advances may outpace the ability to assess fit for purpose and to allow routine application of these new methods for regulatory purposes. There is a need to develop strategies to evaluate the new technologies to determine which ones are ready for regulatory use. The opportunity to apply these potentially faster, more accurate, and cost-effective approaches remains an important goal to facilitate their incorporation into regulatory use. However, without a clear strategy to evaluate emerging technologies rapidly and appropriately, the value of these efforts may go unrecognized or may take longer. It is important for the regulatory science field to keep up with the research in these technically advanced areas and to understand the science behind these new approaches. The regulatory field must understand the critical quality attributes of these novel approaches and learn from each other's experience so that workforces can be trained to prepare for emerging global regulatory challenges. Moreover, it is essential that the regulatory community must work with the technology developers to harness collective capabilities towards developing a strategy for evaluation of these new and novel assessment tools.


Assuntos
Pesquisa Biomédica , Simulação por Computador , Humanos
11.
ACS Synth Biol ; 10(12): 3359-3368, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34842418

RESUMO

Advanced microbial therapeutics have great potential as a novel modality to diagnose and treat a wide range of diseases. Yet, to realize this potential, robust parts for regulating gene expression and consequent therapeutic activity in situ are needed. In this study, we characterized the expression level of more than 8000 variants of the Escherichia coli sigma factor 70 (σ70) promoter in a range of different environmental conditions and growth states using fluorescence-activated cell sorting and deep sequencing. Sampled conditions include aerobic and anaerobic culture in the laboratory as well as growth in several locations of the murine gastrointestinal tract. We found that σ70 promoters in E. coli generally maintain consistent expression levels across the murine gut (R2: 0.55-0.85, p value < 1 × 10-5), suggesting a limited environmental influence but a higher variability between in vitro and in vivo expression levels, highlighting the challenges of translating in vitro promoter activity to in vivo applications. Based on these data, we design the Schantzetta library, composed of eight promoters spanning a wide expression range and displaying a high degree of robustness in both laboratory and in vivo conditions (R2 = 0.98, p = 0.000827). This study provides a systematic assessment of the σ70 promoter activity in E. coli as it transits the murine gut leading to the definition of robust expression cassettes that could be a valuable tool for reliable engineering and development of advanced microbial therapeutics.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Animais , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Biblioteca Gênica , Camundongos , Regiões Promotoras Genéticas/genética , Fator sigma/genética , Fator sigma/metabolismo , Transcrição Gênica
12.
Front Immunol ; 12: 705543, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34531857

RESUMO

Background: It remains largely unknown how physicochemical properties of hydrolysed infant formulas influence their allergy preventive capacity, and results from clinical and animal studies comparing the preventive capacity of hydrolysed infant formula with conventional infant formula are inconclusive. Thus, the use of hydrolysed infant formula for allergy prevention in atopy-prone infants is highly debated. Furthermore, knowledge on how gut microbiota influences allergy prevention remains scarce. Objective: To gain knowledge on (1) how physicochemical properties of hydrolysed whey products influence the allergy preventive capacity, (2) whether host microbiota disturbance influences allergy prevention, and (3) to what extent hydrolysed whey products influence gut microbiota composition. Methods: The preventive capacity of four different ad libitum administered whey products was investigated in Brown Norway rats with either a conventional or an amoxicillin-disturbed gut microbiota. The preventive capacity of products was evaluated as the capacity to reduce whey-specific sensitisation and allergic reactions to intact whey after intraperitoneal post-immunisations with intact whey. Additionally, the direct effect of the whey products on the growth of gut bacteria derived from healthy human infant donors was evaluated by in vitro incubation. Results: Two partially hydrolysed whey products with different physicochemical characteristics were found to be superior in preventing whey-specific sensitisation compared to intact and extensively hydrolysed whey products. Daily oral amoxicillin administration, initiated one week prior to intervention with whey products, disturbed the gut microbiota but did not impair the prevention of whey-specific sensitisation. The in vitro incubation of infant faecal samples with whey products indicated that partially hydrolysed whey products might confer a selective advantage to enterococci. Conclusions: Our results support the use of partially hydrolysed whey products for prevention of cow's milk allergy in atopy-predisposed infants regardless of their microbiota status. However, possible direct effects of partially hydrolysed whey products on gut microbiota composition warrants further investigation.


Assuntos
Amoxicilina/farmacologia , Microbioma Gastrointestinal , Hipersensibilidade a Leite , Hidrolisados de Proteína/farmacologia , Proteínas do Soro do Leite/farmacologia , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Humanos , Hipersensibilidade a Leite/imunologia , Hipersensibilidade a Leite/prevenção & controle , Ratos
13.
Cell Mol Gastroenterol Hepatol ; 12(4): 1281-1296, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34118489

RESUMO

BACKGROUND AND AIMS: The trigger hypothesis opens the possibility of anti-flare initiation therapies by stating that ulcerative colitis (UC) flares originate from inadequate responses to acute mucosal injuries. However, experimental evidence is restricted by a limited use of suitable human models. We thus aimed to investigate the acute mucosal barrier injury responses in humans with and without UC using an experimental injury model. METHODS: A standardized mucosal break was inflicted in the sigmoid colon of 19 patients with UC in endoscopic and histological remission and 20 control subjects. Postinjury responses were assessed repeatedly by high-resolution imaging and sampling to perform Geboes scoring, RNA sequencing, and injury niche microbiota 16S ribosomal RNA gene sequencing. RESULTS: UC patients had more severe endoscopic postinjury inflammation than did control subjects (P < .01), an elevated modified Geboes score (P < .05), a rapid induction of innate response gene sets (P < .05) and antimicrobial peptides (P < .01), and engagement of neutrophils (P < .01). Innate lymphoid cell type 3 (ILC3) markers were increased preinjury (P < .01), and ILC3 activating cytokines were highly induced postinjury, resulting in an increase in ILC3-type cytokine interleukin-17A. Across groups, the postinjury mucosal microbiome had higher bacterial load (P < .0001) and lower α-diversity (P < .05). CONCLUSIONS: UC patients in remission respond to mucosal breaks by an innate hyperresponse engaging resident regulatory ILC3s and a subsequent adaptive activation. The postinjury inflammatory bowel disease-like microbiota diversity decrease is irrespective of diagnosis, suggesting that the dysbiosis is secondary to host injury responses. We provide a model for the study of flare initiation in the search for antitrigger-directed therapies.


Assuntos
Colite Ulcerativa/etiologia , Colite Ulcerativa/patologia , Microbioma Gastrointestinal , Imunidade Inata , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Adulto , Idoso , Biomarcadores , Estudos de Casos e Controles , Colite Ulcerativa/diagnóstico por imagem , Colite Ulcerativa/metabolismo , Citocinas/metabolismo , Progressão da Doença , Suscetibilidade a Doenças , Disbiose , Endoscopia , Feminino , Interações entre Hospedeiro e Microrganismos , Humanos , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade
14.
Gastroenterology ; 160(7): 2423-2434.e5, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33662387

RESUMO

BACKGROUND & AIMS: IgA exerts its primary function at mucosal surfaces, where it binds microbial antigens to regulate bacterial growth and epithelial attachment. One third of individuals with IgA deficiency (IgAD) suffers from recurrent mucosal infections, possibly related to an altered microbiota. We aimed to delineate the impact of IgAD and the IgA-autoantibody status on the composition and functional capacity of the gut microbiota. METHODS: We performed a paired, lifestyle-balanced analysis of the effect of IgA on the gut microbiota composition and functionality based on fecal samples from individuals with IgAD and IgA-sufficient household members (n = 100), involving quantitative shotgun metagenomics, species-centric functional annotation of gut bacteria, and strain-level analyses. We supplemented the data set with 32 individuals with IgAD and examined the influence of IgA-autoantibody status on the composition and functionality of the gut microbiota. RESULTS: The gut microbiota of individuals with IgAD exhibited decreased richness and diversity and was enriched for bacterial species encoding pathogen-related functions including multidrug and antimicrobial peptide resistance, virulence factors, and type III and VI secretion systems. These functional changes were largely attributed to Escherichia coli but were independent of E coli strain variations and most prominent in individuals with IgAD with IgA-specific autoreactive antibodies. CONCLUSIONS: The microbiota of individuals with IgAD is enriched for species holding increased proinflammatory potential, thereby potentially decreasing the resistance to gut barrier-perturbing events. This phenotype is especially pronounced in individuals with IgAD with IgA-specific autoreactive antibodies, thus warranting a screening for IgA-specific autoreactive antibodies in IgAD to identify patients with IgAD with increased risk for gastrointestinal implications.


Assuntos
Autoanticorpos/metabolismo , Microbioma Gastrointestinal/imunologia , Deficiência de IgA/imunologia , Deficiência de IgA/microbiologia , Imunoglobulina A/metabolismo , Adulto , Idoso , Estudos de Casos e Controles , Fezes/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
15.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33741632

RESUMO

Assessing "dysbiosis" in intestinal microbial communities is increasingly considered a routine analysis in microbiota studies, and it has added relevant information to the prediction and characterization of diseases and other adverse conditions. However, dysbiosis is not a well-defined condition. A variety of different dysbiosis indexes have been suggested and applied, but their underlying methodologies, as well as the cohorts and conditions for which they have been developed, differ considerably. To date, no comprehensive overview and comparison of all the different methodologies and applications of such indexes is available. Here, we list all types of dysbiosis indexes identified in the literature, introduce their methodology, group them into categories, and discuss their potential descriptive and clinical applications as well as their limitations. Thus, our focus is not on the implications of dysbiosis for disease but on the methodological approaches available to determine and quantify this condition.


Assuntos
Testes Diagnósticos de Rotina/métodos , Disbiose/diagnóstico , Microbioma Gastrointestinal/fisiologia , Disbiose/microbiologia , Humanos
16.
FEMS Microbiol Rev ; 45(4)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-33428723

RESUMO

During the first 3 years of life, the microbial ecosystem within the human gut undergoes a process that is unlike what happens in this ecosystem at any other time of our life. This period in time is considered a highly important developmental window, where the gut microbiota is much less resilient and much more responsive to external and environmental factors than seen in the adult gut. While advanced bioinformatics and clinical correlation studies have received extensive focus within studies of the human microbiome, basic microbial growth physiology has attracted much less attention, although it plays a pivotal role to understand the developing gut microbiota during early life. In this review, we will thus take a microbial ecology perspective on the analysis of factors that influence the temporal development of the infant gut microbiota. Such factors include sources of microbes that seed the intestinal environment, physico-chemical (abiotic) conditions influencing microbial growth and the availability of nutrients needed by the intestinal microbes.


Assuntos
Microbioma Gastrointestinal , Microbiota , Adulto , Humanos
17.
ISME Commun ; 1(1): 21, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-36737495

RESUMO

Breastfeeding protects against diseases, with potential mechanisms driving this being human milk oligosaccharides (HMOs) and the seeding of milk-associated bacteria in the infant gut. In a cohort of 34 mother-infant dyads we analyzed the microbiota and HMO profiles in breast milk samples and infant's feces. The microbiota in foremilk and hindmilk samples of breast milk was compositionally similar, however hindmilk had higher bacterial load and absolute abundance of oral-associated bacteria, but a lower absolute abundance of skin-associated Staphylococcus spp. The microbial communities within both milk and infant's feces changed significantly over the lactation period. On average 33% and 23% of the bacterial taxa detected in infant's feces were shared with the corresponding mother's milk at 5 and 9 months of age, respectively, with Streptococcus, Veillonella and Bifidobacterium spp. among the most frequently shared. The predominant HMOs in feces associated with the infant's fecal microbiota, and the dominating infant species B. longum ssp. infantis and B. bifidum correlated inversely with HMOs. Our results show that breast milk microbiota changes over time and within a feeding session, likely due to transfer of infant oral bacteria during breastfeeding and suggest that milk-associated bacteria and HMOs direct the assembly of the infant gut microbiota.

18.
Sci Rep ; 10(1): 20434, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33235332

RESUMO

On many mink farms, antibiotics are used extensively during the lactation period to reduce the prevalence and severity of pre-weaning diarrhoea (PWD) in mink kits (also referred to as greasy kit syndrome). Concerns have been raised, that routine treatment of PWD with antibiotics could affect the natural successional development of the gut microbiota, which may have long lasting consequences. Here we investigated the effects of early life antibiotic treatment administered for 1 week (postnatal days 13-20). Two routes of antibiotic administration were compared to a non-treated control group (CTR, n = 24). Routes of administration included indirect treatment, through the milk from dams receiving antibiotics by intramuscular administration (ABX_D, n = 24) and direct treatment by intramuscular administration to the kits (ABX_K, n = 24). A tendency for slightly increased weight at termination (Day 205) was observed in the ABX_K group. The gut microbiota composition was profiled by 16S rRNA gene sequencing at eight time points between Day 7 and Day 205. A clear successional development of the gut microbiota composition was observed and both treatment regimens caused detectable changes in the gut microbiota until at least eight days after treatment ceased. At termination, a significant positive correlation was identified between microbial diversity and animal weight.


Assuntos
Antibacterianos/administração & dosagem , Bactérias/classificação , Microbioma Gastrointestinal/efeitos dos fármacos , Vison/crescimento & desenvolvimento , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Estudos de Casos e Controles , DNA Bacteriano/genética , DNA Ribossômico/genética , Feminino , Injeções Intramusculares , Masculino , Vison/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
19.
Front Microbiol ; 11: 496, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292395

RESUMO

The intestinal gut microbiota is essential for maintaining host health. Concerns have been raised about the possible connection between antibiotic use, causing microbiota disturbances, and the increase in allergic and autoimmune diseases observed during the last decades. To elucidate the putative connection between antibiotic use and immune regulation, we have assessed the effects of the antibiotic amoxicillin on immune regulation, protein uptake, and bacterial community structure in a Brown Norway rat model. Daily intra-gastric administration of amoxicillin resulted in an immediate and dramatic shift in fecal microbiota, characterized by a reduction of within sample (α) diversity, reduced variation between animals (ß diversity), increased relative abundance of Bacteroidetes and Gammaproteobacteria, with concurrent reduction of Firmicutes, compared to a water control group. In the small intestine, amoxicillin also affected microbiota composition significantly, but in a different way than observed in feces. The small intestine of control animals was vastly dominated by Lactobacillus, but this genus was much less abundant in the amoxicillin group. Instead, multiple different genera expanded after amoxicillin administration, with high variation between individual animals, thus the small intestinal α and ß diversity were higher in the amoxicillin group compared to controls. After 1 week of daily amoxicillin administration, total fecal IgA level, relative abundance of small intestinal regulatory T cells and goblet cell numbers were higher in the amoxicillin group compared to controls. Several bacterial genera, including Escherichia/Shigella, Klebsiella (Gammaproteobacteria), and Bifidobacterium, for which the relative abundance was higher in the small intestine in the amoxicillin group than in controls, were positively correlated with the fraction of small intestinal regulatory T cells. Despite of epidemiologic studies showing an association between early life antibiotic consumption and later prevalence of inflammatory bowel diseases and food allergies, our findings surprisingly indicated that amoxicillin-induced perturbation of the gut microbiota promotes acute immune regulation. We speculate that the observed increase in relative abundance of small intestinal regulatory T cells is partly mediated by immunomodulatory lipopolysaccharides derived from outgrowth of Gammaproteobacteria.

20.
FEMS Microbiol Ecol ; 96(5)2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32275305

RESUMO

Epidemiological evidence indicates that breastfeeding provides protection against development of overweight/obesity. Nonetheless, a small subgroup of infants undergo excessive weight gain during exclusive breastfeeding, a phenomenon that remains unexplained. Breast milk contains both gut-seeding microbes and substrates for microbial growth in the gut of infants, and a large body of evidence suggests a role for gut microbes in host metabolism. Based on the recently established SKOT III cohort, we investigated the role of the infant gut microbiota in excessive infant weight gain during breastfeeding, including 30 exclusively breastfed infants, 13 of which exhibited excessive weight gain and 17 controls which exhibited normal weight gain during infancy. Infants undergoing excessive weight gain during breastfeeding had a reduced abundance of gut Enterococcus as compared with that observed in the controls. Within the complete cohort, Enterococcus abundance correlated inversely with age/gender-adjusted body-weight, body-mass index and waist circumference, body fat and levels of plasma leptin. The reduced abundance of Enterococcus in infants with excessive weight gain was coupled to a lower content of Enterococcus in breast milk samples of their mothers than seen for mothers in the control group. Together, this suggests that lack of breast milk-derived gut-seeding Enterococci may contribute to excessive weight gain in breastfed infants.


Assuntos
Enterococcus , Leptina , Aleitamento Materno , Feminino , Humanos , Lactente , Leite Humano , Obesidade , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA