Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Iran J Biotechnol ; 21(1): e3211, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36811100

RESUMO

Background: Overexpression of miR-141 and miR-200a is known to be associated with the differentiation of T helper 17 (Th17) cells, which are key players in the pathophysiology of autoimmune disorders. However, the function and governing mechanism of these two microRNAs (miRNAs) in Th17 cell skewing are poorly defined. Objectives: The aim of the present study was to identify the common upstream transcription factors and downstream target genes of miR-141 and miR-200a to obtain a better insight into the possible dysregulated molecular regulatory networks driving miR-141/miR-200a-mediated Th17 cell development. Materials and Methods: A consensus-based prediction strategy was applied for in-silico identification of potential transcription factors and putative gene targets of miR-141 and miR-200a. Thereafter, we analyzed the expression patterns of candidate transcription factors and target genes during human Th17 cell differentiation by quantitative real-time PCR and examined the direct interaction between both miRNAs and their potential target sequences using dual-luciferase reporter assays. Results: According to our miRNA-based and gene-based interaction network analyses, pre-B cell leukemia homeobox (PBX1) and early growth response 2 (EGR2) were respectively taken into account as the potential upstream transcription factor and downstream target gene of miR-141 and miR-200a. There was a significant overexpression of the PBX1 gene during the Th17 cell induction period. Furthermore, both miRNAs could directly target EGR2 and inhibit its expression. As a downstream gene of EGR2, the suppressor of cytokine signaling 3 (SOCS3) was also downregulated during the differentiation process. Conclusions: These results indicate that activation of the PBX1/miR-141-miR-200a/EGR2/SOCS3 axis may promote Th17 cell development and, therefore, trigger or exacerbate Th17-mediated autoimmunity.

2.
Cells ; 11(13)2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805074

RESUMO

Extracellular vesicles (EVs) include a heterogeneous group of natural cell-derived nanostructures that are increasingly regarded as promising biotherapeutic agents and drug delivery vehicles in human medicine. Desirable intrinsic properties of EVs including the ability to bypass natural membranous barriers and to deliver their unique biomolecular cargo to specific cell populations position them as fiercely competitive alternatives for currently available cell therapies and artificial drug delivery platforms. EVs with distinct characteristics can be released from various cell types into the extracellular environment as a means of transmitting bioactive components and altering the status of the target cell. Despite the existence of a large number of preclinical studies confirming the therapeutic efficacy of different originated EVs for treating several pathological conditions, in this review, we first provide a brief overview of EV biophysical properties with an emphasis on their intrinsic therapeutic benefits over cell-based therapies and synthetic delivery systems. Next, we describe in detail different EVs derived from distinct cell sources, compare their advantages and disadvantages, and recapitulate their therapeutic effects on various human disorders to highlight the progress made in harnessing EVs for clinical applications. Finally, knowledge gaps and concrete hurdles that currently hinder the clinical translation of EV therapies are debated with a futuristic perspective.


Assuntos
Vesículas Extracelulares , Comunicação Celular , Terapia Baseada em Transplante de Células e Tecidos , Sistemas de Liberação de Medicamentos , Vesículas Extracelulares/metabolismo , Humanos
3.
Hum Cell ; 34(5): 1375-1387, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34086186

RESUMO

Among T helper (Th) lineages differentiated from naïve CD4+ T cells, interleukin (IL)-17-producing Th17 cells are highly correlated with the pathogenesis of autoimmune disorders. This study aimed to clarify the involvement of miR-141-3p and miR-200a-3p in Th17 cell differentiation as well as explore their potential target genes involved. For this purpose, human naïve CD4+ T cells were cultured under Th17 cell polarizing condition. The differentiation process was confirmed through measurement of IL-17 secretion using the ELISA method and assessment of Th17 cell-defining genes expression during the differentiation period. MiR-141-3p and miR-200a-3p downstream genes were identified via consensus and integration in silico approach and their expression pattern and alterations were evaluated by quantitative real-time PCR. Finally, direct interaction between both microRNAs (miRNAs) and their common predicted target sequences was approved by dual-luciferase reporter assay. Highly increased IL-17 secretion and Th17 lineage-specific genes expression confirmed Th17 cell differentiation. Our results have demonstrated that miR-141-3p and miR-200a-3p are Th17 cell-associated miRNAs and their expression level is upregulated significantly during Th17 cell induction. We have also found that retinoic acid receptor beta (RARB) gene, whose product has been reported as a negative regulator of Th17 cell generation, is a direct target of both miRNAs and its downregulation can affect the transcriptional level of JAK/STAT pathway genes. Overall, our results have identified two novel Th17 lineage-associated miRNAs and have provided evidence for the RARB-dependent mechanism of miR-141-3p and miR-200a-3p-induced Th17 cell differentiation and hence Th17-mediated autoimmunity.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Expressão Gênica/genética , MicroRNAs/genética , MicroRNAs/fisiologia , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Células Th17/fisiologia , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Células Cultivadas , Humanos
4.
Sci Rep ; 11(1): 12537, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131166

RESUMO

Differentiation therapy is attracting increasing interest in cancer as it can be more specific than conventional chemotherapy approaches, and it has offered new treatment options for some cancer types, such as treating acute promyelocytic leukaemia (APL) by retinoic acid. However, there is a pressing need to identify additional molecules which act in this way, both in leukaemia and other cancer types. In this work, we hence developed a novel transcriptional drug repositioning approach, based on both bioinformatics and cheminformatics components, that enables selecting such compounds in a more informed manner. We have validated the approach for leukaemia cells, and retrospectively retinoic acid was successfully identified using our method. Prospectively, the anti-parasitic compound fenbendazole was tested in leukaemia cells, and we were able to show that it can induce the differentiation of leukaemia cells to granulocytes in low concentrations of 0.1 µM and within as short a time period as 3 days. This work hence provides a systematic and validated approach for identifying small molecules for differentiation therapy in cancer.


Assuntos
Reposicionamento de Medicamentos/tendências , Fenbendazol/química , Leucemia Promielocítica Aguda/tratamento farmacológico , Tretinoína/química , Quimioinformática/tendências , Fenbendazol/uso terapêutico , Humanos , Tretinoína/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA