Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 129: 155665, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38768535

RESUMO

BACKGROUND: Aging is the primary risk factor of most chronic diseases in humans, including cardiovascular diseases, osteoporosis and neurodegenerative diseases, which extensively damage the quality of life for elderly individuals. Aging is a multifaceted process with numerous factors affecting it. Efficient model organisms are essential for the research and development of anti-aging agents, particularly when investigating pharmacological mechanisms are needed. PURPOSE: This review discusses the application of Caenorhabditis elegans for studying aging and its related signaling pathways, and presents an overview of studies exploring the mechanism and screening of anti-aging agents in C. elegans. Additionally, the review summarizes related clinical trials of anti-aging agents to inspire the development of new medications. METHOD: Literature was searched, analyzed, and collected using PubMed, Web of Science, and Science Direct. The search terms used were "anti-aging", "medicinal plants", "synthetic compounds", "C. elegans", "signal pathway", etc. Several combinations of these keywords were used. Studies conducted in C. elegans or humans were included. Articles were excluded, if they were on studies conducted in silico or in vitro or could not offer effective data. RESULTS: Four compounds mainly derived through synthesis (metformin, rapamycin, nicotinamide mononucleotide, alpha-ketoglutarate) and four active ingredients chiefly obtained from plants (resveratrol, quercetin, Astragalus polysaccharide, ginsenosides) are introduced emphatically. These compounds and active ingredients exhibit potential anti-aging effects in preclinical and clinical studies. The screening of these anti-aging agents and the investigation of their pharmacological mechanisms can benefit from the use of C. elegans. CONCLUSION: Medicinal plants provide valuable resource for the treatment of diseases. A wide source of raw materials for the particular plant medicinal compounds having anti-aging effects meet diverse pharmaceutical requirements, such as immunomodulatory, anti-inflammation and alleviating oxidative stress. C. elegans possesses advantages in scientific research including short life cycle, small size, easy maintenance, genetic tractability and conserved biological processes related to aging. C. elegans can be used for the efficient and rapid evaluation of compounds with the potential to slow down aging.


Assuntos
Envelhecimento , Caenorhabditis elegans , Plantas Medicinais , Caenorhabditis elegans/efeitos dos fármacos , Animais , Plantas Medicinais/química , Envelhecimento/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacos , Metformina/farmacologia , Sirolimo/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química
2.
Comput Biol Med ; 157: 106781, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36931205

RESUMO

RNA-sequencing has been proposed as a valuable technique to develop individualized therapy concepts for cancer patients based on their tumor-specific mutational profiles. Here, we aimed to identify drugs and inhibitors in an individualized therapy-based drug repurposing approach focusing on missense mutations for 35 biopsies of cancer patients. The missense mutations belonged to 9 categories (ABC transporter, apoptosis, angiogenesis, cell cycle, DNA damage, kinase, protease, transcription factor, tumor suppressor). The highest percentages of missense mutations were observed in transcription factor genes. The mutational profiles of all 35 tumors were subjected to hierarchical heatmap clustering. All 7 leukemia biopsies clustered together and were separated from solid tumors. Based on these individual mutation profiles, two strategies for the identification of possible drug candidates were applied: Firstly, virtual screening of FDA-approved drugs based on the protein structures carrying particular missense mutations. Secondly, we mined the Drug Gene Interaction (DGI) database (https://www.dgidb.org/) to identify approved or experimental inhibitors for missense mutated proteins in our dataset of 35 tumors. In conclusion, our approach based on virtual drug screening of FDA-approved drugs and DGI-based inhibitor selection may provide new, individual treatment options for patients with otherwise refractory tumors that do not respond anymore to standard chemotherapy.


Assuntos
Neoplasias , Transcriptoma , Humanos , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Detecção Precoce de Câncer , Neoplasias/tratamento farmacológico , Neoplasias/genética , Fatores de Transcrição/genética
3.
Molecules ; 27(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36144591

RESUMO

The chemotherapy of tumors is frequently limited by the development of resistance and severe side effects. Phytochemicals may offer promising candidates to meet the urgent requirement for new anticancer drugs. We screened 69 phytochemicals, and focused on gedunin to analyze its molecular modes of action. Pearson test-base correlation analyses of the log10IC50 values of 55 tumor cell lines of the National Cancer Institute (NCI), USA, for gedunin with those of 91 standard anticancer agents revealed statistically significant relationships to all 10 tested microtubule inhibitors. Thus, we hypothesized that gedunin may be a novel microtubule inhibitor. Confocal microscopy, cell cycle measurements, and molecular docking in silico substantiated our assumption. Agglomerative cluster analyses and the heat map generation of proteomic data revealed a subset of 40 out of 3171 proteins, the expression of which significantly correlated with sensitivity or resistance for the NCI cell line panel to gedunin. This indicates the complexity of gedunin's activity against cancer cells, underscoring the value of network pharmacological techniques for the investigation of the molecular modes of drug action. Finally, we correlated the transcriptome-wide mRNA expression of known drug resistance mechanism (ABC transporter, oncogenes, tumor suppressors) log10IC50 values for gedunin. We did not find significant correlations, indicating that gedunin's anticancer activity might not be hampered by classical drug resistance mechanisms. In conclusion, gedunin is a novel microtubule-inhibiting drug candidate which is not involved in multidrug resistance mechanisms such as other clinically established mitotic spindle poisons.


Assuntos
Antineoplásicos , Neoplasias , Venenos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Limoninas , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Venenos/farmacologia , Proteômica , RNA Mensageiro , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia
4.
J Biomed Mater Res A ; 107(8): 1736-1743, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30942935

RESUMO

On incidence of kidney failure, the concentration of urea increases and there is need for patients to visit the hospital all through the week for blood purification. However, current hemodialysis has been found to reduce only 66-75% urea in the blood of patients. The main goal of this article is to observe the effect of biocompatible and high mechanical hemodiafiltration in reducing urea and creatinine within the shortest time frame, using two methods of Nano electrospinning fiber (hybrid and coaxial). Hybrid electrospinning was made by zeolite 940-HOA(beta), Fe3 O4 , polyacrylonitrile as well as the addition of nettle plant's leaf extract. Dispersing solution and enzymes were added to two different syringes and was used in making hybrid nanofibers by the electrospinning process. Nessler's Reagent adsorption method was used for measuring the concentration of ammonia after urease enzyme activation. Second coaxial filter was made by the core-shell electrospinning system and cellulose acetate phthalate (CAP) as well as polyurethane (PU) were utilized. The data show hybrid hemodiafiltration with enzyme coating, decomposed urea and enzymes were activated for two days after electrospinning. The core-shell filtration can also reduce creatinine. Core-shell CAP-PU nanofiber was previously used for intravaginal drug delivery and PU was used as an artificial renal microfluidic chip. Thus, our study focused on using CAP-PU to reduce creatinine in dialysis patients. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1736-1743, 2019.


Assuntos
Resinas Acrílicas/química , Compostos Férricos/química , Nanofibras/química , Extratos Vegetais/química , Polímeros/química , Diálise Renal , Urease/metabolismo , Zeolitas/química , Creatinina/química , Lamiaceae/química , Nanofibras/ultraestrutura , Nanopartículas/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Termogravimetria , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA