Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Waste Manag Res ; : 734242X241251432, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801143

RESUMO

Microplastics are characterized by strong hydrophobicity, large specific surface area. In addition to the pollutant they contain, the heavy metals adsorbed on the surface of microplastics can migrate or be transformed with them into the environmental medium, which is potentially harmful to humans. The distribution characteristics of microplastics in contaminated soil at the e-waste dismantling site were studied. The study investigated the adsorption characteristics of polyvinyl chloride (PVC), polypropylene (PP) and acrylonitrile-butadiene-styrene (ABS) on copper (Cu), zinc (Zn) and lead (Pb). It analysed the influence of various factors on the adsorption process of heavy metals, the adsorption law of microplastics on some of the heavy metals in the environment, and the risk of heavy metal release from microplastics to soil. The results showed that ABS and PP were the main microplastics in the contaminated soil. Among them, black, white and transparent microplastics accounted for 89.91%. The shape of microplastics is mainly granular, and microplastics with a particle size of 1-2 mm accounted for the largest proportion. Further studies showed that plastic particles made of ABS, PP and PVC also have the adsorption capacity for different types of heavy metals in soil, and the trends of adsorption capacity are: PP>PVC>ABS. When PP does not reach adsorption equilibrium in the adsorption process, the smaller the particle size and the more added amount, the greater the adsorption capacity. This is because the smaller the particle size of the microplastic is, the more adsorption points it can provide, increasing its ability to adsorb heavy metal ions.

2.
Environ Sci Pollut Res Int ; 31(14): 21962-21972, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38400963

RESUMO

In the context of sustainable development, potentially toxic element (PTE) contamination of soil and large-scale disposal of sludge are two major environmental issues that need to be addressed urgently. It is of great significance to develop efficient and green technologies to solve these problems simultaneously. This study investigated the effects of a 5% addition of thermally treated sludge residues (fermentation and pyrolysis residues) in synergy with L. perenne on soil organic matter, mineral nutrients, PTE speciation, and PTE uptake and transport by L. perenne in an e-waste-contaminated soil through pot experiments. The results showed that the thermally treated sludge residues significantly increased soil electrical conductivity, cation exchange capacity, organic matter, available phosphorus, and exchangeable potassium contents. New PTE-containing crystalline phases were detected, and dissolved humic substances were found. Sludge fermentation residue significantly increased dissolved organic matter content, whereas sludge pyrolysis residue showed no significant effect. The combination of thermally treated sludge residues and L. perenne increased the residual fractions of Cu, Zn, Pb, and Cd. The thermally treated sludge residues promoted L. perenne growth, increasing fresh weight, plant height, and phosphorus and potassium uptake. The uptake of Cu, Zn, Pb, and Cd by L. perenne was significantly reduced. This approach has the potential for applications in the ecological restoration of e-waste-contaminated soils.


Assuntos
Resíduo Eletrônico , Metais Pesados , Poluentes do Solo , Metais Pesados/análise , Solo/química , Cádmio/análise , Esgotos/química , Disponibilidade Biológica , Chumbo , Poluentes do Solo/análise , Fósforo , Potássio
3.
J Cell Mol Med ; 28(2): e18038, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38124399

RESUMO

Junctional adhesion molecular 3 (JAM3) is downregulated by hypermethylation in cancers but is unclear in cholangiocarcinoma. The JAM3 expression level was checked in cholangiocarcinoma cell lines and tissues. Methylated JAM3 was detected in cell lines, tissues and plasma cell-free DNAs (cfDNA). The roles of JAM3 in cholangiocarcinoma were studied by transfection of siRNA and pCMV3-JAM3. The survival analysis was based on the Gene Set Cancer Analysis (GSCA) database. JAM3 was downregulated in HCCC-9810 and HuCCT1 cell lines and tissues by hypermethylation. Methylated JAM3 was detected in cfDNAs with 53.3% sensitivity and 96.6% specificity. Transfection of pCMV3-JAM3 into HCCC-9810 and HuCCT1 induced apoptosis and suppressed cell proliferation, migration and invasion. The depletion of JAM3 in RBE cells using siRNA decreased apoptosis and increased cell proliferation, migration and invasion. Hypermethylation of JAM3 was associated with tumour differentiation, metastasis and TNM stage. Downregulation and hypermethylation of JAM3 were related to poor progression-free survival. Junctional adhesion molecular 3 may function as a tumour suppressor in cholangiocarcinoma. Methylated JAM3 DNA may represent a non-invasive molecular marker for the early detection of cholangiocarcinoma and prognosis.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Regulação para Baixo/genética , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Biomarcadores , Proliferação de Células/genética , Ductos Biliares Intra-Hepáticos/metabolismo , Neoplasias dos Ductos Biliares/diagnóstico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , RNA Interferente Pequeno/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA