Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Int J Biol Macromol ; : 135671, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39284463

RESUMO

d-Limonene is the predominant component of essential oil from Exocarpium Citri Grandis, known for its antibacterial, antioxidant, insecticidal, and anti-inflammatory properties. The synthesis, transport, and accumulation of d-limonene in Citrus grandis 'Tomentosa' fruits are regulated by limonene synthetase (LS) and its associated regulatory genes. This study addresses the gap in understanding the spatiotemporal cytological changes of LS and its regulatory genes. Through cytochemical techniques, we investigated the distribution of essential oil in the plastids, endoplasmic reticulum, and vacuoles of secretory cavity cells. We identified the LS-encoding gene CgLS via transcriptomics and demonstrated in vitro that CgLS catalyzes the formation of d-limonene from geranyl diphosphate (GPP). Transient overexpression of CgLS increased monoterpene limonene accumulation, while TRV virus-induced gene silencing reduced it. CgLS expression levels and d-limonene content showed spatiotemporal consistency with fruit development, with in situ hybridization revealing predominant expression in secretory cavity cells. Immunocytochemical localization indicated that CgLS is primarily located in the endoplasmic reticulum, plastids, and vacuoles. Our findings suggest that CgLS is translated in the endoplasmic reticulum and transported to plastids and vacuoles where d-limonene synthesis occurs. This study provides comprehensive insights into the characteristics of CgLS and its role in d-limonene synthesis at the tissue, cellular, and molecular levels in C. grandis 'Tomentosa'.

2.
Plants (Basel) ; 13(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39273866

RESUMO

Amomum villosum Lour. (A. villosum) is the original plant of the medicinal and culinary spice Amomi Fructus (Sharen) and is an important economic crop in the Lingnan region of China. During the cultivation and production of A. villosum, prolonged reliance on single asexual reproduction has exacerbated the degradation of its varieties, leading to inconsistent yields and quality. Building upon earlier cultivar selection efforts, this study provides a comprehensive evaluation of two newly bred A. villosum varieties (A11 and A12) from perspectives including plant traits, product characteristics, active ingredients, and multi-omics analysis. It was found that A12 plants display enhanced robustness, more aromatic fruits, higher yields, and elevated levels of bornyl acetate, A11 shows the advantage of a high camphor content, and the different metabolites and differentially expressed genes of the two varieties were significantly enriched in multiple metabolic pathways. Additionally, A12 contained more terpenoids and substances with aromatic odors such as sweet, fruity, floral, and green. Furthermore, a key gene (Wv_032842) regulating the acetylation of bornyl was discovered, and its significantly higher expression, in A12. In conclusion, this study has a guiding significance for the evaluation of germplasm resources and the breeding of excellent varieties of A. villosum.

3.
J Dairy Sci ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098498

RESUMO

Lactobacillus delbrueckii ssp. bulgaricus M58 (M58) and Streptococcus thermophilus S10 (S10) are 2 dairy starter strains known for their favorable fermentation characteristics. Therefore, this research aimed to study the effects of 1-d low-temperature ripening on the physicochemical properties and metabolomics of fermented milk. Initially, the performance of single (M58 or S10) and dual (M58+S10) strain fermentation was assessed, revealing that the M58+S10 combination resulted in a shortened fermentation time, a stable gel structure, and desirable viscosity, suggesting positive strain interactions. Subsequently, non-targeted metabolomics analyses using LC-MS and GC-MS were performed to comparatively analyze M58+S10 fermented milk samples collected at the end of fermentation and after 1-d low-temperature ripening. The results showed a significant increase in almost all small peptides and dodecanedioic acid in the samples after one day of ripening, while there was a substantial decrease in indole and amino acid metabolites. Moreover, notable increases were observed in high-quality flavor compounds, such as geraniol, delta-nonalactone, 1-hexanol,2-ethyl-, methyl jasmonate, and undecanal. This study provides valuable insights into the fermentation characteristics of the dual bacterial starter consisting of M58 and S10 strains and highlights the specific contribution of the low-temperature ripening step to the overall quality of fermented milk.

4.
Chemosphere ; 363: 142763, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38969216

RESUMO

The loss of carbon and nitrogen from broiler litter limits nutrient recycling and is damaging to the environment. This study investigated lignite, a low-rank brown coal, as an amendment to reduce the loss of carbon and nitrogen from broiler litter over 3 consecutive grow-out cycles, November 2021 to May 2022, at a commercially operated farm in Victoria, Australia. Lignite-treated litter contained significantly more carbon and nitrogen, with an increase of 70.1 g/bird and 12.6 g/bird for carbon and nitrogen, respectively. Lignite also reduced aerobic microbial respiration, with a 46.0% reduction in CO2 flux recorded in week 7 of the study, resulting in reduced mass loss. It is expected that this is a key mechanism responsible for nutrient retention in litter following treatment with lignite. Furthermore, lignite treatment lowered litter moisture content by 7, 6 and 3 percentage points for grow-out 1, 2 and 3, respectively. These findings present lignite as a beneficial litter amendment for increasing the nutrient value of waste and reducing carbon dioxide emissions. The study highlights the potential of lignite to reduce the environmental impact of poultry production and presents an alternative use for lignite as an existing resource.


Assuntos
Carbono , Galinhas , Carvão Mineral , Abrigo para Animais , Nitrogênio , Animais , Nitrogênio/análise , Carbono/análise , Esterco , Dióxido de Carbono/análise , Vitória
5.
Food Microbiol ; 123: 104566, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038883

RESUMO

Daqu is used as the fermentation starter of Baijiu and contributes diversified functional microbes for saccharifying grains and converting sugars into ethanol and aroma components in Baijiu products. Daqu is mainly classified into three types, namely low (LTD), medium (MTD) and high (HTD) temperature Daqu, according to the highest temperatures reached in their fermentation processes. In this study, we used the PacBio small-molecule real-time (SMRT) sequencing technology to determine the full-length 16 S rRNA gene sequences from the metagenomes of 296 samples of different types of Daqu collected from ten provinces in China, and revealed the bacterial diversity at the species level in the Daqu samples. We totally identified 310 bacteria species, including 78 highly abundant species (with a relative abundance >0.1% each) which accounted for 91.90% of the reads from all the Daqu samples. We also recognized the differentially enriched bacterial species in different types of Daqu, and in the Daqu samples with the same type but from different provinces. Specifically, Lactobacillales, Enterobacterales and Bacillaceae were significantly enriched in the LTD, MTD and HTD groups, respectively. The potential co-existence and exclusion relationships among the bacteria species involved in all the Daqu samples and in the LTD, MTD and HTD samples from a specific region were also identified. These results provide a better understanding of the bacterial diversity in different types of Daqu at the species level.


Assuntos
Bactérias , Fermentação , RNA Ribossômico 16S , RNA Ribossômico 16S/genética , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , China , Microbiota , Filogenia , DNA Bacteriano/genética , Biodiversidade , Bebidas Alcoólicas/microbiologia , Bebidas Alcoólicas/análise , Microbiologia de Alimentos , Metagenoma , Alimentos Fermentados/microbiologia
6.
New Phytol ; 243(5): 1870-1886, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39010694

RESUMO

Maize silk is a specialized type of stigma, covered with numerous papillae for pollen grain capture. However, the developmental process of stigmatic papillae and the underlying regulatory mechanisms have remained largely unknown. Here, we combined the cytological, genetic and molecular studies to demonstrate that three homologous genes ZmSPL10, ZmSPL14 and ZmSPL26 play a central role in promoting stigmatic papilla formation in maize. We show that their triple knockout mutants are nearly complete lack of stigmatic papilla, resulting in a severe reduction in kernel setting. Cellular examination reveals that stigmatic papilla is developed from a precursor cell, which is the smaller daughter cell resulting from asymmetric cell division of a silk epidermal cell. In situ hybridization shows that ZmSPL10, ZmSPL14 and their target genes SPI1, ZmPIN1b, ZmARF28 and ZmWOX3A are preferentially expressed in the precursor cells of stigmatic papillae. Moreover, ZmSPL10, ZmSPL14 and ZmSPL26 directly bind to the promoters of SPI1, ZmPIN1b, ZmARF28 and ZmWOX3A and promote their expression. Further, Zmwox3a knockout mutants display severe defects in stigmatic papilla formation and reduced seed setting. Collectively, our results demonstrate that ZmSPL10, ZmSPL14 and ZmSPL26 act together to promote stigmatic papilla development through regulating auxin signaling and ZmWOX3A expression.


Assuntos
Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Proteínas de Plantas , Transdução de Sinais , Zea mays , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutação/genética , Flores/genética , Flores/crescimento & desenvolvimento , Regiões Promotoras Genéticas/genética , Genes de Plantas , Ligação Proteica , Fenótipo
7.
Chemosphere ; 362: 142790, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38971435

RESUMO

The combination of fluorescent probe and colorimetric technique has become one of the most powerful analytical methods due to the advantages of visualization, minimal measurement errors and high sensitivity. Hence, a novel dual-modality sensing probe with both colorimetric and fluorescent capabilities was developed for detecting cobalt ions (Co2+) based on homocysteine mediated silver nanoparticles and rhodamine 6G derivatives probe (AgNPs-Hcy-Rh6G2). The fluorescence of the AgNPs-Hcy-Rh6G2 probe turned on due to the opening of the Rh6G2 spirolactam ring in the presence of Co2+ by a catalytic hydrolysis. The fluorescent intensity of probe is proportional to Co2+ concentration in the range of 0.10-50 µM with a detection limit of 0.05 µM (S/N = 3). More fascinatingly, the color of AgNPs-Hcy-Rh6G2 probe changed from colorless to pink with increasing Co2+ concentration, which allowing colorimetric determination of Co2+. The absorbance of AgNPs-Hcy-Rh6G2 probe is proportional to Co2+ concentration in the range from 0.10 to 25 µM with a detection limit of 0.04 µM (S/N = 3). This colorimetric and fluorescent dual-modal method exhibited good selectivity, and reproducibility and stability, holding great potential for real samples analysis in environmental and drug field.


Assuntos
Cobalto , Colorimetria , Corantes Fluorescentes , Limite de Detecção , Nanopartículas Metálicas , Rodaminas , Prata , Cobalto/química , Cobalto/análise , Prata/química , Rodaminas/química , Colorimetria/métodos , Nanopartículas Metálicas/química , Corantes Fluorescentes/química , Reprodutibilidade dos Testes , Íons/análise , Espectrometria de Fluorescência
8.
J Org Chem ; 89(12): 8363-8375, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38848119

RESUMO

Palladium-catalyzed decarboxylation of 5-methylene-1,3-oxazinan-2-ones and 5-methylene-1,3-dioxan-2-ones to generate aza-π-allylpalladium and oxa-π-allylpalladium 1,4-dipoles for [4 + 2] cycloaddition reaction with 1,3,5-triazinanes was developed, affording a wide range of hexahydropyrimidine and 1,3-oxazinane derivatives in good to excellent yields (up to 99%). The acyclic sulfonamido-substituted allylic carbonates as aza-π-allylpalladium 1,4-dipole precursors also apply to the developed synthesized strategy, achieving the synthesis of hexahydropyrimidines. Moreover, the in situ-generated aza-π-allylpalladium 1,4-dipoles undergoing dimeric [4 + 4] cycloaddition were also demonstrated by the construction of 1,5-diazocane derivatives.

9.
Front Immunol ; 15: 1369311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601162

RESUMO

Background: Coronavirus disease (COVID-19), caused by SARS-CoV-2, has emerged as a infectious disease, coexisting with widespread seasonal and sporadic influenza epidemics globally. Individuals living with HIV, characterized by compromised immune systems, face an elevated risk of severe outcomes and increased mortality when affected by COVID-19. Despite this connection, the molecular intricacies linking COVID-19, influenza, and HIV remain unclear. Our research endeavors to elucidate the shared pathways and molecular markers in individuals with HIV concurrently infected with COVID-19 and influenza. Furthermore, we aim to identify potential medications that may prove beneficial in managing these three interconnected illnesses. Methods: Sequencing data for COVID-19 (GSE157103), influenza (GSE185576), and HIV (GSE195434) were retrieved from the GEO database. Commonly expressed differentially expressed genes (DEGs) were identified across the three datasets, followed by immune infiltration analysis and diagnostic ROC analysis on the DEGs. Functional enrichment analysis was performed using GO/KEGG and Gene Set Enrichment Analysis (GSEA). Hub genes were screened through a Protein-Protein Interaction networks (PPIs) analysis among DEGs. Analysis of miRNAs, transcription factors, drug chemicals, diseases, and RNA-binding proteins was conducted based on the identified hub genes. Finally, quantitative PCR (qPCR) expression verification was undertaken for selected hub genes. Results: The analysis of the three datasets revealed a total of 22 shared DEGs, with the majority exhibiting an area under the curve value exceeding 0.7. Functional enrichment analysis with GO/KEGG and GSEA primarily highlighted signaling pathways associated with ribosomes and tumors. The ten identified hub genes included IFI44L, IFI44, RSAD2, ISG15, IFIT3, OAS1, EIF2AK2, IFI27, OASL, and EPSTI1. Additionally, five crucial miRNAs (hsa-miR-8060, hsa-miR-6890-5p, hsa-miR-5003-3p, hsa-miR-6893-3p, and hsa-miR-6069), five essential transcription factors (CREB1, CEBPB, EGR1, EP300, and IRF1), and the top ten significant drug chemicals (estradiol, progesterone, tretinoin, calcitriol, fluorouracil, methotrexate, lipopolysaccharide, valproic acid, silicon dioxide, cyclosporine) were identified. Conclusion: This research provides valuable insights into shared molecular targets, signaling pathways, drug chemicals, and potential biomarkers for individuals facing the complex intersection of COVID-19, influenza, and HIV. These findings hold promise for enhancing the precision of diagnosis and treatment for individuals with HIV co-infected with COVID-19 and influenza.


Assuntos
COVID-19 , Infecções por HIV , Influenza Humana , MicroRNAs , Humanos , Influenza Humana/genética , COVID-19/genética , SARS-CoV-2 , Biologia Computacional , MicroRNAs/genética , Fatores de Transcrição , Regulação da Expressão Gênica , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética
10.
AoB Plants ; 16(2): plae017, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38585158

RESUMO

Evolution of cellular characteristics is a fundamental aspect of evolutionary biology, but knowledge about evolution at the cellular level is very limited. In particular, whether a certain intracellular characteristic evolved in angiosperms, and what significance of such evolution is to angiosperms, if it exists, are important and yet unanswered questions. We have found that bidirectional cytokinesis occurs or likely occurs in male meiosis in extant basal and near-basal angiosperm lineages, which differs from the unidirectional cytokinesis in male meiosis in monocots and eudicots. This pattern of cytokinesis in angiosperms seems to align with the distribution pattern of angiosperms with the lineages basal to monocots and eudicots living in tropical, subtropical or temperate environments and monocots and eudicots in an expanded range of environments including tropical, subtropical, temperate, subarctic and arctic environments. These two cytokinetic modes seem to result from two phragmoplast types, respectively. A phragmoplast in the bidirectional cytokinesis dynamically associates with the leading edge of a growing cell plate whereas a phragmoplast in the unidirectional cytokinesis is localized to an entire division plane. The large assembly of microtubules in the phragmoplast in unidirectional cytokinesis may be indicative of increased microtubule stability compared with that of the small microtubule assembly in the phragmoplast in bidirectional cytokinesis. Microtubules could conceivably increase their stability from evolutionary changes in tubulins and/or microtubule-associated proteins. Microtubules are very sensitive to low temperatures, which should be a reason for plants to be sensitive to low temperatures. If monocots and eudicots have more stable microtubules than other angiosperms, they will be expected to deal with low temperatures better than other angiosperms. Future investigations into the male meiotic cytokinetic directions, microtubule stability at low temperatures, and proteins affecting microtubule stability in more species may shed light on how plants evolved to inhabit cold environments.

11.
Org Biomol Chem ; 22(16): 3204-3208, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38563260

RESUMO

An efficient palladium-catalyzed [2 + 2 + 1] annulation of 3-iodochromones, bridged olefins, and iodomethane is described, affording a range of chromone-containing polycyclic compounds. Additionally, the corresponding deuterated products were smoothly obtained with iodomethane-d3 instead of iodomethane. Moreover, the synthetic utility of this method is further substantiated by gram scale preparation and application to late-stage modification of estrone.

12.
Toxicol Appl Pharmacol ; 484: 116857, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38341106

RESUMO

Intestinal injury is one of the most debilitating side effects of many chemotherapeutic agents, such as irinotecan hydrochloride (CPT-11). Accumulating evidence indicates that neutrophil extracellular traps (NETs) play a critical role in the symptoms of ischemia and inflammation related to chemotherapy. The present study investigated the effects and possible mechanisms of phenethyl isothiocyanate (PEITC) in inhibiting NETs and alleviating chemotherapeutic intestinal injury. CPT-11 induced robust neutrophil activation, as evidenced by increased NETs release, intestinal ischemia, and mRNA expression of inflammatory factors. PEITC prolonged the clotting time of chemotherapeutic mice, improved the intestinal microcirculation, inhibited the expression of inflammatory factors, and protected the tight junctions of the intestinal epithelium. Both in vivo and in vitro experiments revealed that PEITC directly suppresses CPT-11-induced NETs damage to intestinal cells, resulting in significant attenuation of epithelial injury. These results suggest that PEITC may be a novel agent to relieve chemotherapeutic intestinal injury via inhibition of NETs.


Assuntos
Armadilhas Extracelulares , Enteropatias , Animais , Camundongos , Irinotecano , Isotiocianatos/farmacologia , Isquemia
13.
Environ Technol ; : 1-14, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38379449

RESUMO

Ammonia (NH3) and greenhouse gas (GHG) emissions are substantial contributors to C and N loss in composting. Lignite can increase N retention by absorbing NH4+ and NH3. However, the effects of co-composting on NH3 and GHG emissions in view of closing nutrient cycle are still poorly investigated. In the study, poultry litter was composted without (CK) or with lignite (T1) or dewatered lignite (T2), and their respective composts NH4+Com_CK, Com_T1, and Com_T2) were tested in a soil incubation to assess NH3 and GHG emission during composting and following soil utilization. The cumulative NH3 flux in T1 and T2 were reduced by 39.3% and 50.2%, while N2O emissions were increased by 7.5 and 15.6 times, relative to CK. The total GHG emission in T2 was reduced by 16.8% compared to CK. Lignite addition significantly increased nitrification and denitrification as evidenced by the increased abundances of amoA, amoB, nirK, and nirS. The increased reduction on NH3 emission by dewatered lignite could be attributed to reduced pH and enhanced cation exchangeable capacity than lignite. The increased N2O was related to enhanced nitrification and denitrification. In the soil incubation experiment, compost addition reduced NH3 emission by 72%∼83% while increased emissions of CO2 and N2O by 306%∼740% and 208%∼454%, compared with urea. Com_T2 strongly reduced NH3 and GHG emissions after soil amendment compared to Com_CK. Overall, dewatered lignite, as an effective additive, exhibits great potential to simultaneously mitigate NH3 and GHG secondary pollution during composting and subsequent utilization of manure composts.

14.
Int J Biol Macromol ; 260(Pt 1): 129475, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262830

RESUMO

`The objective of current research was to encapsulate citrus bergamia essential oil (CBEO) in nanocomplexes composed of sodium caseinate (SC) and peach gum polysaccharide (PG) in various ratios (SC/PG-1:0, 0:1, 1:1, 1:3, and 3:1). The nanocomplexes formed by the combination of SC and PG in a ratio of 1:3 exhibited a zeta potential of -21.36 mV and a PDI of 0.25. The CBEO-loaded SC/PG (1:3) nanocomplexes revealed the maximum encapsulation efficiency (82.47 %) and loading capacity (1.85 %). FTIR also confirmed the secondary structure variations in response to different ratios of CBEO-loaded SC/PG nanocomplexes. In addition, the XRD and fluorescence spectroscopy analysis also revealed structural changes among CBEO nanocomplexes. The thermal capability of CBEO-loaded SC/PG (1:3) nanocomplexes via TGA showed the minimum weight loss among other complexes. SEM and CLSM analysis demonstrated the uniform distribution and spherical morphology of CBEO-loaded SC/PG (1:3) nanocomplexes. The antioxidant activity of free CBEO was significantly improved in CBEO-loaded nanocomplexes. Likewise, the inhibitory activity of CBEO-loaded nanocomplexes exhibited significantly higher antibacterial action against S. aureus and E. coli. The aforementioned perspective suggests that SC/PG nanocomplexes have potent potential to serve as highly effective nanocarriers with a broad spectrum of uses in the pharmaceutical and food sectors.


Assuntos
Citrus , Óleos Voláteis , Prunus persica , Caseínas/química , Escherichia coli , Staphylococcus aureus , Óleos Voláteis/farmacologia , Óleos Voláteis/química
15.
Horm Metab Res ; 56(9): 670-678, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38286402

RESUMO

The World Health Organization (WHO) predicted that patients with diabetes around the world will increase to 600 million by 2040, of which about 1/3 will develop diabetic nephropathy (DN). Therefore, the present study aimed to uncover therapeutic effect of HINT2 and determined its possible mechanisms. Patients with diabetes mellitus and normal volunteers were enrolled at our hospital. Male C57BL/6 mice were fed with a high fat diet and injected intraperitoneally with STZ for once (100 mg/kg body weight). Mouse podocytes (MPC5) cells were induced with 20 mmol/l D-glucose. Inhibition of HINT2 mRNA expression levels in patients with DN was observed, compared with normal group. The serum of HINT2 mRNA expression was negative in correlation with blood sugar, tubulo-interstitial damage, glomerular damage score or urine protein level in patients with DN. HINT2 expression in kidney tissue of mice with DN were downregulated. HINT2 presented reduced DN and inflammation and ROS-induced oxidative stress in model of DN. HINT2 promoted ferroptosis in model of DN by mitochondrial membrane potential. HINT2 suppressed MCU expression in model of DN. HINT2 protein combined with MCU protein increased MCU protein ubiquitination. HINT2 triggers mitochondrial Ca2+ influx to increase ROS production level by MCU. Taken together, these findings demonstrated that HINT2 reduced ROS-induced Oxidative stress and ferroptosis by MCU, suggesting that HINT2 may be a feasible strategy to treat DN.


Assuntos
Nefropatias Diabéticas , Ferroptose , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Espécies Reativas de Oxigênio , Animais , Humanos , Masculino , Ferroptose/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/patologia , Pessoa de Meia-Idade , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Podócitos/metabolismo , Podócitos/efeitos dos fármacos , Podócitos/patologia , Feminino , Relevância Clínica
16.
Tree Physiol ; 44(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-37738622

RESUMO

Calcium (Ca2+)- and zinc Zn2+-dependent nucleases play pivotal roles in plant nuclear DNA degradation in programmed cell death (PCD). However, the mechanisms by which these two nucleases co-participate in PCD-associated nuclear DNA degradation remain unclear. Here, the spatiotemporal expression patterns of two nucleases (CrCAN and CrENDO1) were analyzed qualitatively and quantitatively during PCD in secretory cavity formation in Citrus reticulata 'Chachi' fruits. Results show that the middle and late initial cell stages and lumen-forming stages are key stages for nuclear degradation during the secretory cavity development. CAN and ENDO1 exhibited potent in vitro DNA degradation activity at pH 8.0 and pH 5.5, respectively. Quantitative real-time reverse-transcription polymerase chain reaction, in situ hybridization assays, the subcellular localization of Ca2+ and Zn2+, and immunocytochemical localization showed that CrCAN was activated at the middle and late initial cell stages, while CrENDO1 was activated at the late initial cell and lumen-forming stages. Furthermore, we used immunocytochemical double-labelling to simultaneously locate CrCAN and CrENDO1. The DNA degradation activity of the two nucleases was verified by simulating the change of intracellular pH in vitro. Our results also showed that CrCAN and CrENDO1 worked respectively and co-participated in nuclear DNA degradation during PCD of secretory cavity cells. In conclusion, we propose the model for the synergistic effect of Ca2+- and Zn2+-dependent nucleases (CrCAN and CrENDO1) in co-participating in nuclear DNA degradation during secretory cavity cell PCD in Citrus fruits. Our findings provide direct experimental evidence for exploring different ion-dependent nucleases involved in nuclear degradation during plant PCD.


Assuntos
Cálcio , Citrus , Frutas/metabolismo , Apoptose/genética , DNA de Plantas/genética , Zinco , Citrus/genética , Citrus/metabolismo
17.
J Environ Manage ; 351: 119898, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160543

RESUMO

Ammonia (NH3) emitted from concentrated animal feeding operations can cause environmental and health problems, and indirectly contribute to greenhouse gas emissions. Cattle feedlots are known to be large sources of NH3, but few studies have documented seasonal emissions from Australian feedlots. We conducted two field campaigns to measure NH3 emissions from an intensive beef cattle feedlot in southeast Australia, and these results were combined with previous measurements at the same feedlot to document seasonal variations in emissions and to derive annual feedlot emission factors (EFs). Emission rates were calculated with an inverse dispersion modelling (IDM) technique, based on NH3 concentrations measured at the feedlot with open-path lasers (OPLs). The average area emission rates in spring, summer, autumn and winter were 90.5, 167.4, 96.2 and 86.8 µg NH3 m-2 s-1 from the cattle pens, and 22.5, 18.1, 7.7 and 20.7 µg NH3 m-2 s-1 from the manure stockpile area, respectively. The total per-animal EFs ranged from 126.0 (autumn) to 190.2 g NH3 animal-1 d-1 (summer), representing a loss of 47.5-64.6% of the fed N. Seasonal variations in emissions were related to air temperature. Slight changes in crude protein content of the cattle diet may also have impacted seasonal variability. Taking seasonal variations into consideration, the average feedlot EF was 160.4 g NH3 animal-1 d-1, with 90% of the emissions coming from the cattle pens. Extrapolating the EF to all feedlot cattle in the country, the direct NH3 emissions from Australian feedlots amount to 65.2 Gg NH3 annually, or 3.7% of the national total. Our study benchmarks seasonal and annual EFs and N losses for Australian commercial feedlots, and provides a baseline for extrapolating the impacts of mitigation efforts.


Assuntos
Amônia , Gases de Efeito Estufa , Animais , Bovinos , Vitória , Amônia/análise , Estações do Ano , Esterco/análise
18.
Crit Rev Food Sci Nutr ; : 1-18, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37983125

RESUMO

Fermentation is one of the most effective methods of food preservation. Since ancient times, food has been fermented using lactic acid bacteria (LAB). Fermented milk is a very intricate fermentation ecosystem, and the microbial metabolism of fermented milk largely determines its metabolic properties. The two most frequently used dairy starter strains are Streptococcus thermophilus (S. thermophilus) and Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus). To enhance both the culture growth rate and the flavor and quality of the fermented milk, it has long been customary to combine S. thermophilus and L. bulgaricus in milk fermentation due to their mutually beneficial and symbiotic relationship. On the one hand, the symbiotic relationship is reflected by the nutrient co-dependence of the two microbes at the metabolic level. On the other hand, more complex interaction mechanisms, such as quorum sensing between cells, are involved. This review summarizes the application of LAB in fermented dairy products and discusses the symbiotic mechanisms and interactions of milk LAB starter strains from the perspective of nutrient supply and intra- and interspecific quorum sensing. This review provides updated information and knowledge on microbial interactions in a fermented milk ecosystem.


The symbiotic relationship between Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus is reviewed.Their nutrient co-dependence is discussed.The role of quorum sensing in their interaction is discussed for the first time.This review is of interest to colleagues interested in exploiting LAB starter cultures.

19.
Therap Adv Gastroenterol ; 16: 17562848231207280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034098

RESUMO

As a frequent complication of inflammatory bowel disease (IBD), Clostridium difficile infection (CDI) was confirmed to not only aggravate the symptoms of IBD but also result in unexpected outcomes, including death. With the increasing prevalence rate of IBD and the updating of CDI diagnosis, the incidence of CDI in IBD patients is also seen rising. Although a detection method consisting of glutamate dehydrogenase immunoassay or nucleic acid amplification test and then toxin A/B enzyme immunoassay was recommended and widely adopted, the diagnosis of CDI in IBD is still a challenge because of the overlap between the symptoms of CDI in IBD and CDI itself. Vancomycin and fidaxomicin are the first-line therapy for CDI in IBD; however, the treatment has different effects due to the complexity of IBD patients' conditions and the choice of different treatment schemes. Although the use of fecal microbial transplantation is now in the ascendant for IBD management, the prospects are still uncertain and the prevention and treatment of the recurrence of CDI in IBD remain a clinical challenge. In this paper, the epidemiology, pathophysiology, clinical manifestation, prevention, and therapy of CDI in IBD were summarized and presented.

20.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834180

RESUMO

Nonsyndromic biliary atresia (BA) is a rare polygenic disease, with autoimmunity, virus infection and inflammation thought to play roles in its pathogenesis. We conducted a genome-wide association study in 336 nonsyndromic BA infants and 8900 controls. Our results validated the association of rs17095355 in ADD3 with BA risk (odds ratio (OR) = 1.70, 95% confidence interval (95% CI) = 1.49-1.99; p = 4.07 × 10-11). An eQTL analysis revealed that the risk allele of rs17095355 was associated with increased expression of ADD3. Single-cell RNA-sequencing data and immunofluorescence analysis revealed that ADD3 was moderately expressed in cholangiocytes and weakly expressed in hepatocytes. Immuno-fluorescent staining showed abnormal deposition of ADD3 in the cytoplasm of BA hepatocytes. No ADD3 auto-antibody was observed in the plasma of BA infants. In the HLA gene region, no variants achieved genome-wide significance. HLA-DQB1 residue Ala57 is the most significant residue in the MHC region (OR = 1.44, 95% CI = 1.20-1.74; p = 1.23 × 10-4), and HLA-DQB1 was aberrantly expressed in the bile duct cells. GWAS stratified by cytomegalovirus (CMV) IgM status in 87 CMV IgM (+) BA cases versus 141 CMV IgM (-) BA cases did not yield genome-wide significant associations. These findings support the notion that common variants of ADD3 account for BA risk. The HLA genes might have a minimal role in the genetic predisposition of BA due to the weak association signal. CMV IgM (+) BA patients might not have different genetic risk factor profiles compared to CMV IgM (-) subtype.


Assuntos
Atresia Biliar , Infecções por Citomegalovirus , Antígenos HLA , Humanos , Lactente , Atresia Biliar/complicações , Atresia Biliar/genética , Atresia Biliar/patologia , Proteínas de Ligação a Calmodulina/metabolismo , Infecções por Citomegalovirus/complicações , Infecções por Citomegalovirus/imunologia , População do Leste Asiático , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Imunoglobulina M/metabolismo , Antígenos HLA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA