Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; : 131463, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39277055

RESUMO

The significant influx of antibiotics into the environment represents ecological risks and threatens human health. Microbial degradation stands as a highly effective method for reducing antibiotic pollution. This study explored the potential of immobilized microbial consortia to efficiently degrade tetracycline. Concurrently, the suitability of different immobilization materials were assessed, with reed charcoal-immobilized consortia exhibiting the highest efficiency in removing tetracycline (92%). Similarly, wheat-bran-loaded bacterial consortia displayed a remarkable 11.43-fold increase in tetracycline removal compared with free consortia. Moreover, adding the carriers increased the nutrients, while the activities of both intracellular and extracellular catalases increased significantly post-immobilization, thus highlighting this enzyme's crucial role in tetracycline degradation. Finally, analysis of the microbial communities revealed the prevalence of Achromobacter and Parapedobacter, signifying their potential as key degraders. Overall, the immobilized consortia not only hold promise for application in the bioremediation of tetracycline-contaminated environment but also provide theoretical underpinnings for environmental remediation by microorganisms.

2.
Environ Pollut ; 362: 124936, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39265768

RESUMO

Pathogens in coastal waters cause infectious diseases and endanger public sanitation safety in humans and animals worldwide. To avoid these risks, timely detection of human-associated pathogens in waters is crucial. In this study, the decay kinetics of the molecular markers for human-associated pathogens, including enteric bacteria (Escherichia coli, Enterococcus, and Bacteroides), non-enteric bacteria (Staphylococcus aureus), crAssphage, and polyomavirus, were monitored over time at different temperatures and background microbes in seawater microcosms. The results indicated that temperature and native marine microbes were the main influential factors in attenuating bacterial pathogens. Remarkably, the effect of native microorganisms was more evidentially striking. Furthermore, Enterococcus was a more reliable and suitable fecal indicator bacterium than E. coli for the marine environment. The decay of crAssphage was like that of polyomavirus, indicating that it may be a good indicator of enterovirus in seawater. More importantly, the 16S amplicon sequencing data highlighted the decay kinetics of multiple bacterial pathogens in parallel with the dynamic changes of the whole bacterial communities. This study provides valuable information for public health risk management and a new approach to understanding the fate of bacteria in the coastal environment.

3.
Front Bioeng Biotechnol ; 12: 1458362, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39295845

RESUMO

Urinary cell-free DNA (UcfDNA) is gaining recognition as an important biomarker for diagnosing bladder cancer. UcfDNA contains tumor derived DNA sequences, making it a viable candidate for non-invasive early detection, diagnosis, and surveillance of bladder cancer. The quantification and qualification of UcfDNA have demonstrated high sensitivity and specificity in the molecular characterization of bladder cancer. However, precise analysis of UcfDNA for clinical bladder cancer diagnosis remains challenging. This review summarizes the history of UcfDNA discovery, its biological properties, and the quantitative and qualitative evaluations of UcfDNA for its clinical significance and utility in bladder cancer patients, emphasizing the critical role of UcfDNA in bladder cancer diagnosis. Emerging bioactive technologies and materials currently offer promising tools for multiple UcfDNA analysis, aiming to achieve more precise and efficient capture of UcfDNA, thereby significantly enhancing diagnostic accuracy. This review also highlights breakthroughs in detection technologies and substrates with the potential to revolutionize bladder cancer diagnosis in clinic.

4.
Environ Int ; 190: 108941, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39128374

RESUMO

With the widespread use of tetracycline antibiotics (TCs) and the application of manure fertilizer in farmland, TCs and their metabolites especially 4-epimers have been heavily detected in agricultural soil. However, existing studies have focused on the residual and environmental behavior of maternal TCs, and few studies have looked at the ecotoxicity of their 4-epimers in soil. In this study, the degradation and interconversion of tetracycline (TC), oxytetracycline (OTC) and their 4-epimers (4-epitetracycline, ETC; 4-epioxytetracycline, OTC) were revealed. Their effects on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and bacterial community in soil were also investigated in comparison. The results showed that the 4-epimers could be substantially transformed to their parents and degraded as a whole. The degradation rates of four selected pollutants are followed: TC > OTC > ETC > EOTC. This indicated that when TCs entered the soil, part of TCs transformed into slower-degraded 4-epimers, and these 4-epimers could also be converted back to their antibiotic parents, causing the long-term residue of TCs in soil. When added to the soil alone, TC and OTC significantly promoted the proliferation of most ARGs and MGEs, among them, trb-C, IS1247 and IS1111 were the top three genes in abundance. ETC and EOTC had little effect at the beginning. However, as the 4-epimers continuously converted into their parents after one month of cultivation, ETC and EOTC treatments showed similar promoting effect on ARGs and MGEs, indicating that the effect of ETC and EOTC on soil resistome was lagged and mainly caused by their transformed parents. Nocardioides, unclassified_Rhizobiaceae, norank_Sericytochromatia, Microlunatus, Solirubrobacter and norank_67-14 were the most frequent hosts of ARGs, Most of which belong to the phylum Actinobacteria. Due to their large transformation to TCs, slow degradation rate and potential effects on soil microbes and ARGs, the harm of TCs' 4-epimers on soil ecosystem cannot be ignored.


Assuntos
Antibacterianos , Microbiologia do Solo , Poluentes do Solo , Solo , Tetraciclinas , Poluentes do Solo/toxicidade , Tetraciclinas/farmacologia , Antibacterianos/farmacologia , Solo/química , Bactérias/efeitos dos fármacos , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Oxitetraciclina
5.
Front Microbiol ; 15: 1410195, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39144208

RESUMO

Anthropogenic activities are driving significant changes in coastal ecological environments, increasingly spotlighting microorganisms associated with seagrass bed ecosystems. Labyrinthula is primarily recognized as a saprophytic protist associated with marine detritus, and it also acts as an opportunistic pathogen affecting marine algae, terrestrial plants and mollusks, especially in coastal environments. The genus plays a key role in the decomposition of marine detritus, facilitated by its interactions with diatoms and through the utilization of a diverse array of carbohydrate-active enzymes to decompose seagrass cell walls. However, human activities have significantly influenced the prevalence and severity of seagrass wasting disease (SWD) through factors such as climate warming, increased salinity and ocean acidification. The rise in temperature and salinity, exacerbated by human-induced climate change, has been shown to increase the susceptibility of seagrass to Labyrinthula, highlighting the adaptability of pathogen to environmental stressors. Moreover, the role of seagrass in regulating pathogen load and their immune response to Labyrinthula underscore the complex dynamics within these marine ecosystems. Importantly, the genotype diversity of seagrass hosts, environmental stress factors and the presence of marine organisms such as oysters, can influence the interaction mechanisms between seagrass and Labyrinthula. Besides, these organisms have the potential to both mitigate and facilitate pathogen transmission. The complexity of these interactions and their impacts driven by human activities calls for the development of comprehensive multi-factor models to better understand and manage the conservation and restoration of seagrass beds.

6.
Sci Total Environ ; 948: 174731, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39002587

RESUMO

Canopy interception significantly affects hydrological processes such as infiltration, runoff and evapotranspiration. Research on grass canopy interception remains limited, and the experimental methods employed differ substantially. To thoroughly investigate the canopy interception characteristics of grass and clarify the methodological differences, five commonly utilized slope protection grass species in temperate regions were cultivated in a laboratory setting, and their canopy interception characteristics were experimentally investigated using the water-balance method (WBM), the water-wiping method (WWM) and the water-immersion method (WIM), respectively. The results showed that the WBM is more accurate for measuring canopy interception in grass, whereas both the WWM and the WIM underestimate grass canopy interception capacity. The canopy interception capacity measured by the WBM was 1.61-2.09 times higher than that of the WWM and 1.93-3.47 times higher than that of the WIM. Grey correlation analysis of the eight evaluated factors indicated that leaf area is the most influential factor affecting canopy interception in grass, followed by rainfall amount, dry mass, rainfall intensity, canopy projection area, leaf contact angle, fresh weight, and average height. There is a negative power function relationship between the interception ratio and the rainfall amount. With increasing rainfall intensity, the canopy interception capacity initially increases and then decreases, peaking at rainfall intensities of 15 to 20 mm/h. Leaf contact angle is a key quantifiable parameter that explains the differences in canopy interception among different grass species, and the canopy interception per unit leaf area decreases as the leaf contact angle increases. This study demonstrates that the WBM provides the most accurate measurements of grass canopy interception compared to the WWM and WIM, and highlights the leaf contact angle as a key factor in explaining interspecies differences. These findings could enhance the understanding of grass canopy interception and guide the selection of experimental methods.


Assuntos
Poaceae , Poaceae/fisiologia , Folhas de Planta/fisiologia , Conservação dos Recursos Naturais/métodos , Chuva , Hidrologia , Monitoramento Ambiental/métodos
7.
Sci Total Environ ; 948: 174934, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39047843

RESUMO

Global change mediated shifts in ocean temperature and circulation patterns, compounded by human activities, are leading to the expansion of marine oxygen minimum zones (OMZs) with concomitant alterations in nutrient and climate-active trace gas cycling. While many studies have reported distinct bacterial communities within OMZs, much of this research compares across depths rather with oxygen status and does not include eukayrotic microbes. Here, we investigated the Bay of Bengal (BoB) OMZ, where low oxygen conditions are persistent, but trace levels of oxygen remain (< 20 µM from 200 to 500 m). As other environmental variables are similar between OMZ and non-OMZ (NOZ) stations, we compared the abundance, diversity, and community composition of several microbial groups (bacterioplankton, Labyrinthulomycetes, and fungi) across oxygen levels. While prokaryote abundance decreased with depth, no significant differences existed across oxygen groups. In contrast, Labyrinthulomycetes abundance was significantly higher in non-OMZ stations but did not change significantly with depth, while fungal abundance was patchy without clear depth or oxygen-related trends. Bacterial and fungal diversity was lower in OMZ stations at 500 m, while Labyrinthulomycetes diversity only showed a depth-related profile, decreasing below the euphotic zone. Surprisingly, previously reported OMZ-associated bacterial taxa were not significantly more abundant at OMZ stations. Furthermore, compared to the bacterioplankton, fewer Labyrinthulomycetes and fungi taxa showed responses to oxygen status. Thus, this research identifies stronger oxygen-level linkages within the bacterioplankton than in the examined microeukaryotes.


Assuntos
Bactérias , Microbiota , Oxigênio , Água do Mar , Oxigênio/análise , Água do Mar/microbiologia , Água do Mar/química , Bactérias/classificação , Biodiversidade , Fungos , Microbiologia da Água
8.
J Hazard Mater ; 474: 134802, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838525

RESUMO

Organic fertilization is a major driver potentiating soil antibiotic resistance in farmland. However, it remains unclear how bacterial antibiotic resistance evolves in fertilized soils and even spreads to crops. Compared with no fertilizer and commercial fertilizer treatments, organic fertilizers markedly increased the abundance of soil antibiotic resistance genes (ARGs) but the relatively weaker transfer of resistance genes from soil to crops. The introduction of organic fertilizers enriches the soil with nutrients, driving indigenous microorganisms towards a K-strategy. The pH, EC, and nutrients as key drivers influenced the ARGs abundance. The neutral (pH 7.2), low salt (TDS 1.4 %) and mesotrophic (carbon content 3.54 g/L) habitats similar to the soil environment conditioned by organic fertilizers. These environmental conditions clearly prolonged the persistence of resistant plasmids, and facilitated their dissemination to massive conjugators soil microbiome but not to plant endophytes. This suggested that organic fertilizers inhibited the spread of ARGs to crops. Moreover, the composition of conjugators showed differential selection of resistant plasmids by endophytes under these conditions. This study sheds light on the evolution and dissemination of antibiotic resistance in farmlands and can aid in the development of antimicrobial resistance control strategies in agriculture.


Assuntos
Produtos Agrícolas , Fertilizantes , Plasmídeos , Microbiologia do Solo , Plasmídeos/genética , Produtos Agrícolas/microbiologia , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/efeitos dos fármacos , Solo/química , Agricultura , Resistência Microbiana a Medicamentos/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Bactérias/efeitos dos fármacos , Bactérias/genética , Microbiota/efeitos dos fármacos , Fazendas , Genes Bacterianos
9.
BMC Microbiol ; 24(1): 153, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704527

RESUMO

BACKGROUND: Saline lakes are home to various archaea that play special and crucial roles in the global biogeochemical cycle. The Qinghai-Tibet Plateau hosts a large number of lakes with diverse salinity ranging from 0.1 to over 400 g/L, harboring complex and diverse archaea. To the best of our knowledge, the formation mechanisms and potential ecological roles of archaea in Qinghai-Tibetan Plateau saline lakes remain largely unknown. RESULTS: Using High-throughput Illumina sequencing, we uncovered the vastly distinct archaea communities between two typical saline lakes with significant salinity differences on the Qinghai Tibet Plateau (Qinghai saline lake and Chaka hypersaline lake) and suggested archaea played different important roles in methanogenesis-related and nitrate reduction-related functions of these two lakes, respectively. Rather than the individual effect of salinity, the composite effect of salinity with diverse environmental parameters (e.g., temperature, chlorophyll a, total nitrogen, and total phosphorus) dominated the explanation of the variations in archaeal community structure in different habitats. Based on the network analysis, we further found the correlations between dominant archaeal OTUs were tight but significantly different between the two habitats, implying that archaeal interactions may also largely determine the shape of archaeal communities. CONCLUSION: The present study improved our understanding of the structure and function of archaea in different saline lakes on the Qinghai-Tibet Plateau and provided a new perspective on the mechanisms underlying shaping their communities.


Assuntos
Archaea , Lagos , Salinidade , Lagos/microbiologia , Lagos/química , Archaea/genética , Archaea/classificação , Archaea/metabolismo , Tibet , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Biodiversidade , Ecossistema , RNA Ribossômico 16S/genética , Nitrogênio/metabolismo , Nitrogênio/análise , DNA Arqueal/genética
10.
J Hazard Mater ; 469: 134080, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38522204

RESUMO

Humus substances (HSs) participate in extracellular electron transfer (EET), which is unclear in heterogeneous soil. Here, a microbial electrochemical system (MES) was constructed to determine the effect of HSs, including humic acid, humin and fulvic acid, on soil electron transfer. The results showed that fulvic acid led to the optimal electron transfer efficiency in soil, as evidenced by the highest accumulated charges and removal of total petroleum hydrocarbons after 140 days, with increases of 161% and 30%, respectively, compared with those of the control. However, the performance of MES with the addition of humic acid and humin was comparable to that of the control. Fulvic acid amendment enhanced the carboxyl content and oxidative state of dissolved organic matter, endowing a better electron transfer capacity. Additionally, the presence of fulvic acid induced an increase in the abundance of electroactive bacteria and organic degraders, extracellular polymeric substances and functional enzymes such as cytochrome c and NADH synthesis, and the expression of m tr C gene, which is responsible for EET enhancement in soil. Overall, this study reveals the mechanism by which HSs stimulate soil electron transfer at the physicochemical and biological levels and provides basic support for the application of bioelectrochemical technology in soil.


Assuntos
Benzopiranos , Substâncias Húmicas , Solo , Substâncias Húmicas/análise , Solo/química , Elétrons
11.
J Hazard Mater ; 460: 132313, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619277

RESUMO

The degradation of organic pollutants and the adsorption of organic pollutants onto microplastics (MPs) in the environment have recently been intensively studied, but the effects of biocurrents, which are widespread in various soil environments, on the environmental behavior of MPs and antibiotic pollutants have not been reported. In this study, it was found that polylactic acid (PLA) and polyvinyl chloride (PVC) MPs accelerated the mineralization of humic substances in microbial electrochemical systems (MESs). After tetracycline (TC) was introduced into the MESs, the internal resistance of the soil MESs decreased. Additionally, the presence of MPs enhanced the charge output of the soil MESs by 40% (PLA+TC) and 18% (PVC+TC) compared with a control group without MPs (424 C). The loss in MP mass decreased after TC was added, suggesting a promotion of TC degradation rather than MP degradation for charge output. MPs altered the distribution of the highest occupied molecular orbitals and lowest unoccupied molecular orbitals of TC molecules and reduced the energy barrier for the TC hydrolysis reaction. The microbial community of the plastisphere exhibited a greater ability to degrade xenobiotics than the soil microbial community, indicating that MPs were hotspots for TC degradation. This study provides the first glimpse into the influence of MPs on the degradation of TC in MESs, laying a theoretical and methodological foundation for the systematic evaluation of the potential risks of environmental pollutants in the future.


Assuntos
Poluentes Ambientais , Microplásticos , Plásticos , Solo , Microbiologia do Solo , Tetraciclina , Antibacterianos , Poliésteres
12.
J Fungi (Basel) ; 9(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37367576

RESUMO

Fungi have long been known to be dynamic in coastal water columns with multiple trophic modes. However, little is known about their interactions with abiotic and biotic components, contribution to the biological carbon pump (BCP), and organic matter remineralization in the oceanic water column. In this study, we investigated how fungi vary spatially and how their variations relate to that of bacteria in the water column of the South China Sea (SCS). Fungi were about three orders less prevalent than bacteria, and the main factors influencing their distribution were depth, temperature, and distance from the sites of riverine inputs. The decline in the abundance of fungi with depth was less steep than that of bacteria. Correlation tests revealed a strong positive association between the abundance of fungi and bacteria, especially in the twilight (r = 0.62) and aphotic (r = 0.70) zones. However, the co-occurrence network revealed mutual exclusion between certain members of fungi and bacteria. The majority of fungi in the water column were saprotrophs, which indicated that they were generally involved in the degradation of organic matter, particularly in twilight and aphotic zones. Similar to bacteria, the involvement of fungi in the metabolism of carbohydrates, proteins, and lipids was predicted, pointing to their participation in the turnover of organic carbon and the biogeochemical cycling of carbon, nitrogen, and sulfur. These findings suggest that fungi play a role in BCP and support their inclusion in marine microbial ecosystem models.

13.
Environ Int ; 177: 108035, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37329759

RESUMO

Bioelectric field is a stimulated force to degrade xenobiotic pollutants in soils. However, the effect of bioelectric field on microplastics (MPs) aging is unclear. The degradation behavior of polyvinyl chloride (PVC), polyethylene (PE) and polylactic acid (PLA) was investigated in an agricultural soil microbial electrochemical system in which bioelectric field was generated in-situ by native microbes. Based on the density function theory, the energy gaps between the highest and the lowest occupied molecular orbitals of the three polymers with periodic structure were 4.20, 7.24 and 10.09 eV respectively, and further decreased under the electric field, indicating the higher hydrolysis potential of PLA. Meanwhile, the mass loss of PLA in the closed-circuit group (CC) was the highest on day 120, reaching 8.94%, which was 3.01-3.54 times of that without bioelectric field stimulation. This was mainly due to the enrichment of plastic-degrading bacteria and a robust co-occurrence network as the deterministic assembly process, e.g., the abundance of potential plastic-degrading bacteria on the surface of PLA and PVC in the CC increased by 1.92 and 1.30 times, respectively, compared to the open-circuit group. In terms of functional genes, the xenobiotic biodegradation and metabolism capacity of plasticsphere in the CC were stronger than that in soil, and determined by the bioaccessibility of soil nitrogen and carbon. Overall, this study explored the promoting effect of bioelectric field on the degradation of MPs and reveled the mechanism from quantum chemical calculations and microbial community analysis, which provides a novel perception to the in-situ degradation of MPs.


Assuntos
Microplásticos , Plásticos , Solo/química , Xenobióticos , Microbiologia do Solo , Poliésteres
14.
Sci Total Environ ; 885: 163907, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37149170

RESUMO

The contamination of greenhouse vegetable soils with antibiotics and antibiotic resistance genes (ARGs), caused by the application of livestock and poultry manure, is a prominent environmental problem. In this study, the effects of two ecological earthworms (endogeic Metaphire guillelmi and epigeic Eisenia fetida) on the accumulation and transfer of chlortetracycline (CTC) and ARGs in a soil-lettuce system were studied via pot experiments. The results revealed that earthworm application accelerated the removal of the CTC from the soil and lettuce roots and leaves, with the CTC content reducing by 11.7-22.8 %, 15.7-36.1 %, and 8.93-19.6 % compared with that of the control, respectively. Both earthworms significantly reduced the CTC uptake by lettuce roots from the soil (P < 0.05) but did not change the CTC transfer efficiency from the roots to leaves. The high-throughput quantitative PCR results showed that the relative abundance of ARGs in the soil and lettuce roots and leaves decreased by 22.4-27.0 %, 25.1-44.1 %, and 24.4-25.4 %, respectively, with the application of earthworms. Earthworm addition decreased the interspecific bacterial interactions and the relative abundance of mobile genetic elements (MGEs), which helped reduce the dissemination of ARGs. Furthermore, some indigenous soil antibiotic degraders (Pseudomonas, Flavobacterium, Sphingobium, and Microbacterium) were stimulated by the earthworms. The results of redundancy analysis indicated that the bacterial community composition, CTC residues, and MGEs were the main parameters affecting the distribution of ARGs, accounting for 91.1 % of the total distribution. In addition, the bacterial function prediction results showed that the addition of earthworms reduced the abundance of some pathogenic bacteria in the system. Overall, our findings imply that earthworm application can substantially reduce the accumulation and transmission risk of antibiotics and ARGs in soil-lettuce systems, providing a cost-effective soil bioremediation practice for addressing antibiotic and ARGs contamination to guarantee the safety of vegetables and human health.


Assuntos
Clortetraciclina , Oligoquetos , Animais , Humanos , Antibacterianos/farmacologia , Antibacterianos/análise , Clortetraciclina/análise , Lactuca , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Genes Bacterianos , Verduras , Solo/química , Esterco/análise , Microbiologia do Solo
15.
Microorganisms ; 11(3)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36985166

RESUMO

The consequences of climate change may directly or indirectly impact the marine biosphere. Although ocean stratification has been recognized as one of the crucial consequences of ocean warming, its impacts on several critical aspects of marine microbes remain largely unknown in the Indian Ocean. Here, we investigate the effects of water stratification, in both surface and subsurface layers, on hydrogeographic parameters and bacterioplankton diversity within the equatorial eastern Indian Ocean (EIO). Strong stratification in the upper 200 m of equatorial EIO was detected with evidential low primary productivity. The vertical bacterioplankton diversity of the whole water columns displayed noticeable variation, with lower diversity occurring in the surface layer than in the subsurface layers. Horizontal heterogeneity of bacterioplankton communities was also in the well-mixed layer among different stations. SAR11 and Prochlorococcus displayed uncharacteristic low abundance in the surface water. Some amplicon sequence variants (ASVs) were identified as potential biomarkers for their specific depths in strongly-stratified water columns. Thus, barriers resulting from stratification are proposed to function as an 'ASV filter' to regulate the vertical bacterioplankton community diversity along the water columns. Overall, our results suggest that the effects of stratification on the structure and diversity of bacterioplankton can extend up to the bathypelagic zone in the strongly-stratified waters of the equatorial EIO. This study provides the first insight into the effect of stratification on the subsurface microbial communities in the equatorial eastern Indian Ocean.

16.
Microbiol Spectr ; : e0424722, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36744882

RESUMO

Labyrinthulomycetes are a group of ubiquitous and diverse unicellular Stramenopiles and have long been known for their vital role in ocean carbon cycling. However, their ecological function from the perspective of organic matter degradation remains poorly understood. This study reports high-quality genomes of two newly isolated Labyrinthulomycetes strains, namely, Botryochytrium sp. strain S-28 and Oblongichytrium sp. strain S-429, and provides molecular analysis of their ecological functions using comparative genomics and a biochemical assay. Our results suggest that Labyrinthulomycetes may occupy multiple ecological niches in marine ecosystems because of the significant differences in gene function among different genera. Certain strains could degrade wheat bran independently by secreting cellulase. The key glycoside hydrolase families (GH1, GH5, and GH9) related to cellulase and the functional domains of carbohydrate-active enzymes (CAZymes) were more enriched in their genomes. This group can actively participate in marine biochemical cycles as decomposers. In contrast, other strains that could not produce cellulase may thrive as "leftover scavengers" and act as a source of nutrients to the higher-trophic-level plankton. In addition, our findings emphasize the dual roles of endoglucanase, acting as both exo- and endoglucanases, in the process of cellulose degradation. Using genomic, biochemical, and phylogenetic analyses, our study provides a broader insight into the nutritional patterns and ecological functions of Labyrinthulomycetes. IMPORTANCE Unicellular heterotrophic eukaryotes are an important component of marine ecosystems. However, their ecological functions and modes of nutrition remain largely unknown. Our current understanding of marine microbial ecology is incomplete without integrating these heterotrophic microeukaryotes into the food web models. This study focuses on the unicellular fungus-like protists Labyrinthulomycetes and provides two high-quality genomes of cellulase-producing Labyrinthulomycetes. Our study uncovers the basis of their cellulase production by deciphering the results of genomic, biochemical, and phylogenetic analyses. This study instigates a further investigation of the molecular mechanism of organic matter utilization by Labyrinthulomycetes in the world's oceans.

17.
Microbiol Spectr ; 10(3): e0014422, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35502912

RESUMO

Labyrinthulomycetes protists are an important heterotrophic component of microeukaryotes in the world's oceans, but their distribution patterns and ecological roles are poorly understood in pelagic waters. This study employed flow cytometry and high-throughput sequencing to characterize the abundance, diversity, and community structure of Labyrinthulomycetes in the pelagic Eastern Indian Ocean. The total Labyrinthulomycetes abundance varied much more among stations than did the abundance of prokaryotic plankton, reaching over 1,000 cells mL-1 at a few "bloom" stations. The total Labyrinthulomycetes abundance did not decline with depth throughout the whole water column (5 to 2,000 m) like the abundance of prokaryotic plankton did, and the Labyrinthulomycetes average projected biomass over all samples was higher than that of the prokaryotic plankton. However, Labyrinthulomycetes diversity showed obvious vertical variations, with richness, Shannon diversity, and evenness greatest in the upper epipelagic, lower epipelagic, and deep waters, respectively. Many abundant phylotypes were detected across multiple water layers, which aligned with the constant vertical Labyrinthulomycetes biomass, suggesting potential sinking and contribution to the biological pump. Hierarchical clustering revealed distinct ecotypes partitioning by vertical distribution patterns, suggesting their differential roles in the carbon cycle and storage processes. Particularly, most phylotypes showed patchy distributions (occurring in only few samples) as previously found in the coastal waters, but they were less associated with the Labyrinthulomycetes blooms than the prevalent phylotypes. Overall, this study revealed distinct patterns of Labyrinthulomycetes ecotypes and shed light on their importance in the pelagic ocean carbon cycling and sequestration relative to that of the prokaryotic plankton. IMPORTANCE While prokaryotic heterotrophic plankton are well accepted as major players in oceanic carbon cycling, the ecological distributions and functions of their microeukaryotic counterparts in the pelagic ocean remain largely unknown. This study focused on an important group of heterotrophic (mainly osmotrophic) protistan microbes, the Labyrinthulomycetes, whose biomass can surpass that of the prokaryotic plankton in many marine ecosystems, including the bathypelagic ocean. We found patchy horizontal but persistent vertical abundance profiles of the Labyrinthulomycetes protists in the pelagic waters of the Eastern Indian Ocean, which were distinct from the spatial patterns of the prokaryotic plankton. Moreover, multiple Labyrinthulomycetes ecotypes with distinct vertical patterns were detected and, based on the physiologic, metabolic, and genomic understanding of their cultivated relatives, were inferred to play multifaceted key roles in the carbon cycle and sequestration, particularly as contributors to the vertical carbon export from the surface to the dark ocean, i.e., the biological pump.


Assuntos
Carbono , Ecossistema , Carbono/metabolismo , Ecótipo , Eucariotos , Oceano Índico , Proteínas de Membrana Transportadoras/genética , Oceanos e Mares , Plâncton/genética , Plâncton/metabolismo , Água do Mar , Água
18.
Molecules ; 27(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458647

RESUMO

Media supplementation with exogenous chemicals is known to stimulate the accumulation of important lipids produced by microalgae and thraustochytrids. However, the roles of exogenous chemicals in promoting and preserving the terpenoids pool of thraustochytrids have been rarely investigated. Here, we realized the effects of two media supplements-mannitol and biotin-on the biomass and squalene production by a thraustochytrid strain (Thraustochytrium sp. ATCC 26185) and elucidated their mechanism of action. A significant change in the biomass was not evident with the exogenous addition of these supplements. However, with mannitol (1 g/L) supplementation, the ATCC 26185 culture achieved the best concentration (642 ± 13.6 mg/L) and yield (72.9 ± 9.6 mg/g) of squalene, which were 1.5-fold that of the control culture (non-supplemented). Similarly, with biotin supplementation (0.15 mg/L), the culture showed 459 ± 2.9 g/L and 55.7 ± 3.2 mg/g of squalene concentration and yield, respectively. The glucose uptake rate at 24 h of fermentation increased markedly with mannitol (0.31 g/Lh-1) or biotin (0.26 g/Lh-1) supplemented culture compared with non-supplemented culture (0.09 g/Lh-1). In addition, the reactive oxygen species (ROS) level of culture supplemented with mannitol remained alleviated during the entire period of fermentation while it alleviated after 24 h with biotin supplementation. The ∆ROS with mannitol was better compared with biotin supplementation. The total antioxidant capacity (T-AOC) of the supplemented culture was more than 50% during the late stage (72-96 h) of fermentation. Our study provides the potential of mannitol and biotin to enhance squalene yield and the first lines of experimental evidence for their protective role against oxidative stress during the culture of thraustochytrids.


Assuntos
Esqualeno , Estramenópilas , Antioxidantes/farmacologia , Biotina , Meios de Cultura/farmacologia , Suplementos Nutricionais , Fermentação , Glucose , Manitol/farmacologia , Esqualeno/farmacologia
19.
Mar Drugs ; 20(4)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35447902

RESUMO

Thraustochytrids have gained significant attention in recent years because of their considerable ecological and biotechnological importance. Yet, the influence of seasons and habitats on their culturable diversity and lipid profile remains poorly described. In this study, a total of 58 thraustochytrid strains were isolated from the coastal waters of Qingdao, China. These strains were phylogenetically close to five thraustochytrid genera, namely Botryochytrium, Oblongichytrium, Schizochytrium, Thraustochytrium, and Sicyoidochytrium. Most of the isolated strains were classified into the genera Thraustochytrium and Oblongichytrium. Further diversity analysis revealed that samples collected from nutrient-rich habitats and during summer/fall yielded significantly higher culturable diversity of thraustochytrids than those from low-nutrient habitats and winter/spring. Moreover, sampling habitats and seasons significantly impacted the fatty acid profiles of the strains. Particularly, the Oblongichytrium sp. OC931 strain produced a significant amount (153.99 mg/L) of eicosapentaenoic acid (EPA), accounting for 9.12% of the total fatty acids, which was significantly higher than that of the previously reported Aurantiochytrium strains. Overall, the results of this study fill the gap in our current understanding of the culturable diversity of thraustochytrids in the coastal waters and the impact of the sampling habitats and seasons on their capacity for lipid accumulation.


Assuntos
Ácidos Graxos , Estramenópilas , Biotecnologia , Ecossistema , Ácido Eicosapentaenoico
20.
Sci Total Environ ; 817: 153004, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35026254

RESUMO

Marine suspended particles are unique micro-habitats for diverse microbes and also hotspots of microbially metabolic activities. However, the association of bacterial pathogens, especially those carrying antibiotic resistance genes (ARGs), with these particles remain largely unknown in coastal habitats. This study investigated the distribution of pathogen-related bacteria and ARGs in particle-associated (PA) and free-living (FL) fractions of samples collected at three coastal beaches using NextGen sequencing and qPCR. Suspended particles were found to harbor significantly higher abundances of bacteria of pathogen-related genera and ARGs than their counterparts. Functional analysis of microbial community suggested that antibiotic biosynthetic pathways were also more abundant among PA microbiome comparing to FL microbial community, which further facilitated the spread of ARGs. Additionally, 13 pathogen-related genera co-occurred with ARG in PA fraction while only 2 pathogen-related genera co-occurred with ARGs in FL fraction. Overall, our research revealed suspended particles harbored more abundant pathogen-related genera and ARGs comparing with surrounding waters. Thus, suspended particles are hotspots for pathogen-related genera and ARGs and may pose a greater threat to human health in coastal beach.


Assuntos
Antibacterianos , Microbiota , Antibacterianos/farmacologia , Bactérias/genética , China , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA