Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39124256

RESUMO

Aging is an irreversible pathophysiological process for all organisms. The accumulation of senescent cells in pathological sites or tissues is recognized as the major cause of diseases and disorders during the aging process. Small molecules that reduce senescent cell burdens have gained increasing attention as promising intervention therapeutics against aging, but effective anti-senescence agents remain rare. Camellia Sect. Chrysantha Chang is documented as a traditional Chinese herbal medicine used by ethnic groups for many medical and health benefits, but its effect on aging is unclear. Here, we investigated the anti-senescence potential of eight C. Sect. Chrysantha Chang species. The results show that ethyl acetate fractions from these C. Sect. Chrysantha Chang species were able to delay the senescence of H9c2 cardiomyocytes except for C. pingguoensis (CPg). N-butanol fractions of C. multipetala (CM), C. petelotii var. grandiflora (CPt), and C. longzhouensis (CL) showed a senescent cell clearance effect by altering the expression levels of senescent-associated marker genes in the DNA-damage response (DDR) pathway and the senescent cell anti-apoptotic pathway (SCAPs). By using UPLC-QTOF-MS-based non-targeted metabolomics analyses, 27 metabolites from Sect. Chrysantha species were putatively identified. Among them, high levels of sanchakasaponin C and D in CM, CPt, and CL were recognized as the key bioactive compounds responsible for senescent cell clearance. This study is the first to disclose and compare the anti-cell-senescence effect of a group of C. Sect. Chrysantha Chang, including some rare species. The combination of senescent markers and metabolomics analyses helped us to reveal the differences in chemical constituents that target senescent cells. Significantly, contrary to the C. chrysantha var. longistyla (CCL), which is widely cultivated and commercialized for tea drinks, CM, CPt, and CL contain unique chemicals for managing aging and aging-related diseases. The results from this study provide a foundation for species selection in developing small-molecule-based drugs to alleviate diseases and age-related dysfunctions and may potentially be useful for advancing geroscience research.

2.
Plant Cell ; 36(5): 1755-1776, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38318972

RESUMO

The milestone of compound leaf development is the generation of separate leaflet primordia during the early stages, which involves two linked but distinct morphogenetic events: leaflet initiation and boundary establishment for leaflet separation. Although some progress in understanding the regulatory pathways for each event have been made, it is unclear how they are intrinsically coordinated. Here, we identify the PINNATE-LIKE PENTAFOLIATA2 (PINNA2) gene encoding a newly identified GRAS transcription factor in Medicago truncatula. PINNA2 transcripts are preferentially detected at organ boundaries. Its loss-of-function mutations convert trifoliate leaves into a pinnate pentafoliate pattern. PINNA2 directly binds to the promoter region of the LEAFY orthologue SINGLE LEAFLET1 (SGL1), which encodes a key positive regulator of leaflet initiation, and downregulates its expression. Further analysis revealed that PINNA2 synergizes with two other repressors of SGL1 expression, the BEL1-like homeodomain protein PINNA1 and the C2H2 zinc finger protein PALMATE-LIKE PENTAFOLIATA1 (PALM1), to precisely define the spatiotemporal expression of SGL1 in compound leaf primordia, thereby maintaining a proper pattern of leaflet initiation. Moreover, we showed that the enriched expression of PINNA2 at the leaflet-to-leaflet boundaries is positively regulated by the boundary-specific gene MtNAM, which is essential for leaflet boundary formation. Together, these results unveil a pivotal role of the boundary-expressed transcription factor PINNA2 in regulating leaflet initiation, providing molecular insights into the coordination of intricate developmental processes underlying compound leaf pattern formation.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago truncatula , Folhas de Planta , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Morfogênese/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA