Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Appl Toxicol ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760888

RESUMO

Multidrug and toxin extrusion protein 1 (MATE1), an efflux transporter mainly expressed in renal proximal tubules, mediates the renal secretion of organic cationic drugs. The inhibition of MATE1 will impair the excretion of drugs into the tubular lumen, leading to the accumulation of nephrotoxic drugs in the kidney and consequently potentiating nephrotoxicity. Screening and identifying potent MATE1 inhibitors can predict or minimize the risk of drug-induced kidney injury. Flavonoids, a group of polyphenols commonly found in foodstuffs and herbal products, have been reported to cause transporter-mediated food/herb-drug interactions. Our objective was to investigate the inhibitory effects of flavonoids on MATE1 in vitro and in vivo and to assess the effects of flavonoids on cisplatin-induced kidney injury. Thirteen flavonoids exhibited significant transport activity inhibition (>50%) on MATE1 in MATE1-MDCK cells. Among them, the six strongest flavonoid inhibitors, including irisflorentin, silymarin, isosilybin, sinensetin, tangeretin, and nobiletin, markedly increased cisplatin cytotoxicity in these cells. In cisplatin-induced in vivo renal injury models, irisflorentin, isosilybin, and sinensetin also increased serum creatinine and blood urea nitrogen levels to different degrees, especially irisflorentin, which exhibited the most potent nephrotoxicity with cisplatin. The pharmacophore model indicated that the hydrogen bond acceptors at the 3, 5, and 7 positions may play a critical role in the inhibitory effect of flavonoids on MATE1. Our findings provide helpful information for predicting the potential risks of flavonoid-containing food/herb-drug interactions and avoiding the exacerbation of drug-induced kidney injury via MATE1 mediation.

2.
Environ Sci Pollut Res Int ; 31(1): 481-493, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38015405

RESUMO

An important breakthrough in the coordinated development of China's low-carbon goals and food security strategies is agricultural development oriented toward quality, safety, green, and low carbon. This study integrated command-control and market-incentive environmental regulation (ER), agricultural eco-efficiency (ACEE), and food quality and safety (FQS) into a unified theoretical framework. The unexpected output-oriented Super-SBM model was used to calculate the ACEE of China's provinces and cities from 2011 to 2020 and test the bidirectional causality between ACEE and FQS through the system generalized moment estimation model. A dynamic panel smooth transition (PSTR) model was used to explore the nonlinear impact mechanisms of different types of ERs on ACEE and FQS. The results showed that there was a long-term, two-way causal relationship between ACEE and FQS. The impact of environmental regulations on ACEE and FQS has a nonlinear relationship. Among them, the role of market-incentivized ER is more significant. Therefore, building an interregional coordinated development mechanism, improving the utilization rate of agricultural resources such as fertilizers and pesticides, and coordinating the positive effects of different types of ERs are the keys to improving the ACEE and ensuring the coordinated development of FQS.


Assuntos
Carbono , Eficiência , Carbono/análise , Agricultura , Qualidade dos Alimentos , Inocuidade dos Alimentos , China , Desenvolvimento Econômico
3.
J Asian Nat Prod Res ; 26(3): 353-371, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37589480

RESUMO

The organic anion transporter 3 (OAT3), an important renal uptake transporter, is associated with drug-induced acute kidney injury (AKI). Screening and identifying potent OAT3 inhibitors with little toxicity in natural products, especially flavonoids, in reducing OAT3-mediated AKI is of great value. The five strongest OAT3 inhibitors from the 97 flavonoids markedly decreased aristolochic acid I-induced cytotoxicity and alleviated methotrexate-induced nephrotoxicity. The pharmacophore model clarified hydrogen bond acceptors and hydrophobic groups are the critical pharmacophores. These findings would provide valuable information in predicting the potential risks of flavonoid-containing food/herb-drug interactions and optimizing flavonoid structure to alleviate OAT3-related AKI.


Assuntos
Injúria Renal Aguda , Flavonoides , Transportadores de Ânions Orgânicos Sódio-Independentes , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Transporte Biológico , Flavonoides/farmacologia , Flavonoides/química , Transportadores de Ânions Orgânicos/efeitos dos fármacos , Transportadores de Ânions Orgânicos/metabolismo , Relação Estrutura-Atividade , Transportadores de Ânions Orgânicos Sódio-Independentes/efeitos dos fármacos , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo
4.
J Appl Toxicol ; 43(10): 1421-1435, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37057715

RESUMO

Organic cation transporter 2 (OCT2) is mainly responsible for the renal secretion of various cationic drugs, closely associated with drug-induced acute kidney injury (AKI). Screening and identifying potent OCT2 inhibitors with little toxicity in natural products in reducing OCT2-mediated AKI is of great value. Flavonoids are enriched in various vegetables, fruits, and herbal products, and some were reported to produce transporter-mediated drug-drug interactions. This study aimed to screen potential inhibitors of OCT2 from 96 flavonoids, assess the nephroprotective effects on cisplatin-induced kidney injury, and clarify the structure-activity relationships of flavonoids with OCT2. Ten flavonoids exhibited significant inhibition (>50%) on OCT2 in OCT2-HEK293 cells. Among them, the six most potent flavonoid inhibitors, including pectolinarigenin, biochanin A, luteolin, chrysin, 6-hydroxyflavone, and 6-methylflavone markedly decreased cisplatin-induced cytotoxicity. Moreover, in cisplatin-induced renal injury models, they also reduced serum blood urea nitrogen (BUN) and creatinine levels to different degrees, the best of which was 6-methylflavone. The pharmacophore model clarified that the aromatic ring, hydrogen bond acceptors, and hydrogen bond donors might play a vital role in the inhibitory effect of flavonoids on OCT2. Thus, our findings would pave the way to predicting the potential risks of flavonoid-containing food/herb-drug interactions in humans and optimizing flavonoid structure to alleviate OCT2-related AKI.


Assuntos
Injúria Renal Aguda , Cisplatino , Humanos , Transportador 2 de Cátion Orgânico/metabolismo , Cisplatino/toxicidade , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Células HEK293 , Flavonoides/farmacologia , Relação Estrutura-Atividade , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle
5.
Toxicology ; 488: 153475, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870413

RESUMO

Glucose transporter 1 (GLUT1) is mainly responsible for glucose uptake and energy metabolism, especially in the aerobic glycolysis process of tumor cells, which is closely associated with the advancement of tumors. Numerous studies have demonstrated that the inhibition of GLUT1 can decrease the growth of tumor cells and enhance drug sensitivity, so GLUT1 is considered to be a promising therapeutic target for cancer treatment. Flavonoids are a group of phenolic secondary metabolites present in vegetables, fruits, and herbal products, some of which were reported to increase cancer cells' sensitivity to sorafenib by inhibiting GLUT1. Our objective was to screen potential inhibitors of GLUT1 from 98 flavonoids and assess the sensitizing effect of sorafenib on cancer cells. and illuminate the structure-activity relationships of flavonoids with GLUT1. Eight flavonoids, including apigenin, kaempferol, eupatilin, luteolin, hispidulin, isosinensetin, sinensetin, and nobiletin exhibited significant inhibition (>50%) on GLUT1 in GLUT1-HEK293T cells. Among them, sinensetin and nobiletin showed stronger sensitizing effects and caused a sharp downward shift of the cell viability curves in HepG2 cells, illustrating these two flavonoids might become sensitizers to enhance the efficacy of sorafenib by inhibiting GLUT1. Molecular docking analysis elucidated inhibitory effect of flavonoids on GLUT1 was related to conventional hydrogen bonds, but not Pi interactions. The pharmacophore model clarified the critical pharmacophores of flavonoids inhibitors are hydrophobic groups in 3'positions and hydrogen bond acceptors. Thus, our findings would provide useful information for optimizing flavonoid structure to design novel GLUT1 inhibitors and overcome drug resistance in cancer treatment.


Assuntos
Flavonoides , Glucose , Humanos , Flavonoides/farmacologia , Flavonoides/química , Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Células HEK293 , Simulação de Acoplamento Molecular , Sorafenibe , Relação Estrutura-Atividade
6.
Food Res Int ; 157: 111289, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761597

RESUMO

Tryptophan, an essential amino acid, has been reported that it has the potential to regulate depression-like behavior. Meanwhile, Chronic stress-induced depression also has a close relationship with gut microbiota structure and composition. In the current research, we demonstrated that a tryptophan-rich diet (0.6% tryptophan w/w) significantly attenuated depression- and anxiety-like behaviors in a chronic unpredictable mild stress (CUMS)-treated mouse model. Tryptophan supplementation improved neuroinflammation, increased expression of BDNF, and improved mitochondrial energy metabolism in the brain of CUMS-treated mice. Besides, CUMS also enhanced the kynurenine pathway, but repressed the serotonin pathway and indole pathway of tryptophan metabolism, leading to a decrease in 5-HT and indole in serum, whereas tryptophan supplementation might shift the tryptophan metabolism more toward the serotonin pathway in CUMS-treated mice. The gut microbiome was restructured by increasing the relative abundance of Lachnospiracea, Clostridium, Lactobacillus, Bifidobacterium in tryptophan-treated depressive mice. Moreover, tryptophan administration inhibited stress-induced gut barrier damage and decreased inflammatory responses in the colon. Together, our study purports the gut-brain axis as a mechanism for the potential of tryptophan to improve depression and anxiety-related behavior.


Assuntos
Depressão , Triptofano , Animais , Ansiedade , Comportamento Animal , Eixo Encéfalo-Intestino , Depressão/metabolismo , Dieta , Camundongos , Serotonina , Estresse Psicológico/metabolismo , Estresse Psicológico/microbiologia
7.
Cancer Cell Int ; 21(1): 294, 2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34092242

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) is one of the most common types in the world with a high mortality rate. Despite advances in treatment strategies, the overall survival (OS) remains short. Our study aims to establish a reliable prognostic signature closely related to the survival of LUAD patients that can better predict prognosis and possibly help with individual monitoring of LUAD patients. METHODS: Raw RNA-sequencing data were obtained from Fudan University and used as a training group. Differentially expressed genes (DEGs) for the training group were screened. The univariate, least absolute shrinkage and selection operator (LASSO), and multivariate cox regression analysis were conducted to identify the candidate prognostic genes and construct the risk score model. Kaplan-Meier analysis, time-dependent receiver operating characteristic (ROC) curve were used to evaluate the prognostic power and performance of the signature. Moreover, The Cancer Genome Atlas (TCGA-LUAD) dataset was further used to validate the predictive ability of prognostic signature. RESULTS: A prognostic signature consisting of seven prognostic-related genes was constructed using the training group. The 7-gene prognostic signature significantly grouped patients in high and low-risk groups in terms of overall survival in the training cohort [hazard ratio, HR = 8.94, 95% confidence interval (95% CI)] [2.041-39.2]; P = 0.0004), and in the validation cohort (HR = 2.41, 95% CI [1.779-3.276]; P < 0.0001). Cox regression analysis (univariate and multivariate) demonstrated that the seven-gene signature is an independent prognostic biomarker for predicting the survival of LUAD patients. ROC curves revealed that the 7-gene prognostic signature achieved a good performance in training and validation groups (AUC = 0.91, AUC = 0.7 respectively) in predicting OS for LUAD patients. Furthermore, the stratified analysis of the signature showed another classification to predict the prognosis. CONCLUSION: Our study suggested a new and reliable prognostic signature that has a significant implication in predicting overall survival for LUAD patients and may help with early diagnosis and making effective clinical decisions regarding potential individual treatment.

8.
Int J Cancer ; 148(4): 921-931, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33113150

RESUMO

Limited and inefficient treatment options exist for metastatic relapsed cervical cancer (MRCC), and there are currently no reliable indicators to guide therapeutic selection. We performed deep sequencing analyses targeting 322 cancer-related genes in plasma cell-free DNA and matched white blood cells in 173 serial blood samples from 82 locally advanced CC (LACC) or MRCC patients and when possible during treatment. We identified five notable nonsynonymous mutant genes (PIK3CA, BRAF, GNA11, FBXW7 and CDH1) in the MRCC samples as the metastatic relapse significantly mutated (MSG) genes and found that MRCC patients with any detectable MSG mutations had significantly shorter progression-free survival (PFS) (P = .005) and overall survival (OS) (P = .007) times than those without detectable MSG mutations. Additionally, analyses of matched prechemotherapy and postchemotherapy plasma revealed that a reduction in the number of MSG mutations after chemotherapy was significantly associated with partial remission (PR) and stable disease (SD) (P = .007). Among the patients included in the longitudinal tracking ctDNA analysis, an increase in MSG mutations was observed earlier in response to disease progression than radiological imaging. Our results outline the mutation profiles of MRCC. We show how longitudinal monitoring with ctDNA in liquid biopsy samples provides both predictive and prognostic information during treatment.


Assuntos
Biomarcadores Tumorais/genética , DNA Tumoral Circulante/genética , Mutação , Neoplasias do Colo do Útero/genética , Adulto , Idoso , DNA Tumoral Circulante/sangue , Estudos de Coortes , Progressão da Doença , Feminino , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Metástase Neoplásica , Recidiva Local de Neoplasia , Prognóstico , Terapia de Salvação/métodos , Neoplasias do Colo do Útero/sangue , Neoplasias do Colo do Útero/tratamento farmacológico , Adulto Jovem
9.
Cancer Genet ; 240: 59-65, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31786363

RESUMO

PURPOSE: Mixed phenotype acute leukemia (MPAL) is a rare subtype of acute leukemia and its progressive genomic basis over time remains unclear. We aimed to investigate the longitudinal genomic evolution of MPAL from diagnosis to relapse. METHODS: We performed whole genome sequencing (WGS) on bone marrow (BM) samples obtained at the four stages of this disease in a male patient with Philadelphia chromosome positive (Ph+) MPAL, including primary, complete cytogenetic remission (CCR), complete molecular remission (CMR), and relapse stage during the 3 year follow-up period. RESULTS: 156 single-nucleotide variants (SNVs) and indels were detected, which exhibited distinctive evolutionary behaviors. Seventeen mutations disappeared quickly upon DCTER treatment and never came back. Seven mutations, although disappeared initially, reoccurred with the withdrawal of TKI treatment. Notably, ten mutations emerged in spite of the active DCTER chemotherapy. Moreover, copy number loss played critical roles in monitoring MPAL progression, displaying 7, 0, 0, and 383 losses at the stages of primary, CCR, CMR, and relapse respectively. CONCLUSION: This longitudinal genomic investigation of the Ph+ MPAL patient established one MPAL evolution model in which the primary tumor acquired additional variations leading to tumor relapse. Moreover, the event of copy number loss remained a valuable hallmark in the progression of MPAL.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Evolução Clonal , Variações do Número de Cópias de DNA , Leucemia Aguda Bifenotípica/genética , Recidiva Local de Neoplasia/genética , Adulto , Análise Mutacional de DNA , Progressão da Doença , Humanos , Leucemia Aguda Bifenotípica/tratamento farmacológico , Leucemia Aguda Bifenotípica/patologia , Estudos Longitudinais , Masculino , Recidiva Local de Neoplasia/patologia , Cromossomo Filadélfia , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA