Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 747
Filtrar
1.
Ecotoxicol Environ Saf ; 286: 117161, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39405969

RESUMO

Macrophage polarization facilitates the inflammatory response and intensified fibrosis in the silicosis microenvironment by a mechanism related to macrophage pyroptosis, although the upstream target remains poorly defined. Currently, there are few reports on the development of drugs that alleviate macrophage polarization by dampening pyroptosis. The present study aims to explore the mechanics of silica mediating macrophage polarization and to investigate whether quercetin (Que) can depolarize macrophages with this mechanism. Silica processing led to prominent M1 polarization of macrophages. Additionally, significant macrophage polarization could be detected in the lung tissue of mice with airway-perfused silica. Further investigation turned out that pronounced mitochondria damage, mtDNA cytoplasmic ectomy, and pyroptosis occurred in response to silica. Nevertheless, Que treatment could effectively attenuate silica-induced mitochondria damage and pyroptosis as demonstrated in vitro and in vivo. Further exploration presented Que could bind to TOM70 and restore silica-induced mitochondrial damage. More importantly, the M1 polarization of macrophage was depressed with the co-treatment of Que and silica, wherein the inflammatory response and pulmonary fibrosis were also mitigated without obvious damage to vital organs. In conclusion, these findings proved that silica leads to mitochondrial damage, thereby evoking pyroptosis and promoting macrophage M1 polarization. Que could bind to TOM70 and restore its function, suppressing mitochondrial damage and pyroptosis, and depolarizing macrophages to reduce fibrosis, which provides a promising strategy for silicosis treatment in the future.

2.
Nat Commun ; 15(1): 7800, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242511

RESUMO

Dynamic tracking of spinal instrumentation could facilitate real-time evaluation of hardware integrity and in so doing alert patients/clinicians of potential failure(s). Critically, no method yet exists to continually monitor the integrity of spinal hardware and by proxy the process of spinal arthrodesis; as such hardware failures are often not appreciated until clinical symptoms manifest. Accordingly, herein, we report on the development and engineering of a bio-adhesive metal detector array (BioMDA), a potential wearable solution for real-time, non-invasive positional analyses of osseous implants within the spine. The electromagnetic coupling mechanism and intimate interfacial adhesion enable the precise sensing of the metallic implants position without the use of radiation. The customized decoupling models developed facilitate the precise determination of the horizontal and vertical positions of the implants with incredible levels of accuracy (e.g., <0.5 mm). These data support the potential use of BioMDA in real-time/dynamic postoperative monitoring of spinal implants.


Assuntos
Metais , Próteses e Implantes , Coluna Vertebral , Dispositivos Eletrônicos Vestíveis , Humanos , Coluna Vertebral/cirurgia , Metais/química , Adesivos , Fusão Vertebral/instrumentação , Fusão Vertebral/métodos
3.
J Nanobiotechnology ; 22(1): 556, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39267105

RESUMO

METHODS: Single-cell transcriptomics and high-throughput transcriptomics were used to screen factors significantly correlated with intervertebral disc degeneration (IDD). Expression changes of CFIm25 were determined via RT-qPCR and Western blot. NP cells were isolated from mouse intervertebral discs and induced to degrade with TNF-α and IL-1ß. CFIm25 was knocked out using CRISPR-Cas9, and CFIm25 knockout and overexpressing nucleus pulposus (NP) cell lines were generated through lentiviral transfection. Proteoglycan expression, protein expression, inflammatory factor expression, cell viability, proliferation, migration, gene expression, and protein expression were analyzed using various assays (alcian blue staining, immunofluorescence, ELISA, CCK-8, EDU labeling, transwell migration, scratch assay, RT-qPCR, Western blot). The GelMA-HAMA hydrogel loaded with APET×2 polypeptide and sgRNA was designed, and its effects on NP regeneration were assessed through in vitro and mouse model experiments. The progression of IDD in mice was evaluated using X-ray, H&E staining, and Safranin O-Fast Green staining. Immunohistochemistry was performed to determine protein expression in NP tissue. Proteomic analysis combined with in vitro and in vivo experiments was conducted to elucidate the mechanisms of hydrogel action. RESULTS: CFIm25 was upregulated in IDD NP tissue and significantly correlated with disease progression. Inhibition of CFIm25 improved NP cell degeneration, enhanced cell proliferation, and migration. The hydrogel effectively knocked down CFIm25 expression, improved NP cell degeneration, promoted cell proliferation and migration, and mitigated IDD progression in a mouse model. The hydrogel inhibited inflammatory factor expression (IL-6, iNOS, IL-1ß, TNF-α) by targeting the p38/NF-κB signaling pathway, increased collagen COLII and proteoglycan Aggrecan expression, and suppressed NP degeneration-related factors (COX-2, MMP-3). CONCLUSION: The study highlighted the crucial role of CFIm25 in IDD and introduced a promising therapeutic strategy using a porous spherical GelMA-HAMA hydrogel loaded with APET×2 polypeptide and sgRNA. This innovative approach offers new possibilities for treating degenerated intervertebral discs.


Assuntos
Hidrogéis , Degeneração do Disco Intervertebral , Núcleo Pulposo , Peptídeos , Regeneração , Animais , Hidrogéis/química , Núcleo Pulposo/metabolismo , Camundongos , Degeneração do Disco Intervertebral/terapia , Regeneração/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Disco Intervertebral , Humanos , Proliferação de Células/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Movimento Celular/efeitos dos fármacos
4.
Molecules ; 29(17)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39274866

RESUMO

Coreopsis tinctoria Nutt. is an important medicinal plant in traditional Uyghur medicine. The skin-lightening potential of the flower has been recognized recently; however, the active compounds responsible for that are not clear. In this work, tyrosinase, a target protein for regulating melanin synthesis, was immobilized on the Whatman paper for the first time to screen skin-lightening compounds present in the flower. Quercetagetin-7-O-glucoside (1), marein (2), and okanin (3) were found to be the enzyme inhibitors. The IC50 values of quercetagetin-7-O-glucoside (1) and okanin (3) were 79.06 ± 1.08 µM and 30.25 ± 1.11 µM, respectively, which is smaller than 100.21 ± 0.11 µM of the positive control kojic acid. Enzyme kinetic analysis and molecular docking were carried out to investigate their inhibition mechanism. Although marein (2) showed a weak inhibition effect in vitro, it inhibited the intracellular tyrosinase activity and diminished melanin production in melanoma B16 cells as did the other two inhibitors. The paper-based ligand fishing method developed in this work makes it effective to quickly screen tyrosinase inhibitors from natural products. This is the first report on the tyrosinase inhibitory effect of those three compounds, showing the promising potential of Coreopsis tinctoria for the development of herbal skin-lightening products.


Assuntos
Coreopsis , Inibidores Enzimáticos , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/metabolismo , Coreopsis/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Animais , Melaninas/antagonistas & inibidores , Melaninas/biossíntese , Ligantes , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Camundongos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/antagonistas & inibidores , Cinética
5.
Artigo em Inglês | MEDLINE | ID: mdl-39259624

RESUMO

With prior knowledge of seen objects, humans have a remarkable ability to recognize novel objects using shared and distinct local attributes. This is significant for the challenging tasks of zero-shot learning (ZSL) and fine-grained visual classification (FGVC), where the discriminative attributes of objects have played an important role. Inspired by human visual attention, neural networks have widely exploited the attention mechanism to learn the locally discriminative attributes for challenging tasks. Though greatly promoted the development of these fields, existing works mainly focus on learning the region embeddings of different attribute features and neglect the importance of discriminative attribute localization. It is also unclear whether the learned attention truly matches the real human attention. To tackle this problem, this paper proposes to employ real human gaze data for visual recognition networks to learn from human attention. Specifically, we design a unified Attribute Attention Network (A 2 Net) that learns from human attention for both ZSL and FGVC tasks. The overall model consists of an attribute attention branch and a baseline classification network. On top of the image feature maps provided by the baseline classification network, the attribute attention branch employs attribute prototypes to produce attribute attention maps and attribute features. The attribute attention maps are converted to gaze-like attentions to be aligned with real human gaze attention. To guarantee the effectiveness of attribute feature learning, we further align the extracted attribute features with attribute-defined class embeddings. To facilitate learning from human gaze attention for the visual recognition problems, we design a bird classification game to collect real human gaze data using the CUB dataset via an eye-tracker device. Experiments on ZSL and FGVC tasks without/with real human gaze data validate the benefits and accuracy of our proposed model. This work supports the promising benefits of collecting human gaze datasets and automatic gaze estimation algorithms learning from human attention for high-level computer vision tasks.

6.
Front Microbiol ; 15: 1445304, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39323879

RESUMO

Background: The gut microbiota has been demonstrated to have a significant role in the pathogenesis and progression of a variety of diseases, including prostate cancer, prostatitis, and benign prostatic hyperplasia. Potential links between prostate diseases, immune cells and the gut microbiota have not been adequately investigated. Methods: MR studies were conducted to estimate the effects of instrumental variables obtained from genome-wide association studies (GWASs) of 196 gut microbial taxa and 731 immune cells on the risk of prostate diseases. The primary method for analysing causal relationships was inverse variance-weighted (IVW) analysis, and the MR results were validated through various sensitivity analyses. Results: MR analysis revealed that 28 gut microbiome taxa and 75 immune cell types were significantly associated with prostate diseases. Furthermore, reverse MR analysis did not support a causal relationship between prostate diseases and the intestinal microbiota or immune cells. Finally, the results of the mediation analysis indicated that Secreting Treg % CD4 Treg, Activated & resting Treg % CD4 Treg, and Mo MDSC AC inhibited the role of the class Mollicutes in reducing the risk of PCa. In prostatitis, CD8+ T cells on EM CD8br hinder the increased risk associated with the genus Eubacterium nodatum group. Interestingly, in BPH, CD28- CD25++CD8br AC and CD16-CD56 on HLA DR+ NK promoted the role of the genus Dorea in reducing the risk of BPH. Conclusion: This study highlights the complex relationships among the gut microbiota, immune cells and prostate diseases. The involvement of the gut microbiota in regulating immune cells to impact prostate diseases could provide novel methods and concepts for its therapy and management.

7.
Pancreatology ; 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39327124

RESUMO

OBJECTIVES: To evaluate the efficacy of quantitative parameters from dual-energy CT (DECT) and basic CT features in predicting the postoperative early recurrence (ER) of pancreatic ductal adenocarcinoma (PDAC). METHODS: In this study, patients with PDAC who underwent radical resection and DECT from 2018 to 2022 were enrolled and categorised into ER and non-ER groups. The clinical data, basic CT features and DECT parameters of all patients were analyzed. Independent predictors of ER were identified with Logistic regression analyses. Three models (model A: basic CT features; model B: DECT parameters; model C: basic CT features + DECT parameters) were established. Receiver operating characteristic curve analysis was utilized to evaluate predictive performance. RESULTS: A total of 150 patients were enrolled (ER group: n = 63; non-ER group: n = 87). Rim enhancement (odds ratio [OR], 3.32), peripancreatic strands appearance (OR, 2.68), electron density in the pancreatic parenchymal phase (P-Rho; OR, 0.90), arterial enhancement fraction (AEF; OR, 0.05) and pancreatic parenchyma fat fraction in the delayed phase (OR, 1.25) were identified as independent predictors of ER. Model C showed the highest area under the curve of 0.898. In addition, the corresponding ER risk factors were identified separately for resectable and borderline resectable PDAC subgroups. CONCLUSIONS: DECT quantitative parameters allow for the noninvasive prediction of postoperative ER in patients with PDAC, and the combination of DECT parameters and basic CT features shows a high prediction efficiency. Our model can help to identify patients with high-risk factors to guide preoperative decision making.

8.
Clin Exp Med ; 24(1): 188, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136821

RESUMO

IgA nephropathy (IgAN) and Sjogren's syndrome (SS) are two autoimmune diseases with undetermined etiology and related to abnormal activation of lymphocytes. This study aims to explore the crucial genes, pathways and immune cells between IgAN and SS. Gene expression profiles of IgAN and SS were obtained from the Gene Expression Omnibus and Nephroseq data. Differentially expressed gene (DEG) and weighted gene co-expression network analyses (WGCNA) were done to identify common genes. Enrichment analysis and protein-protein interaction network were used to explore potential molecular pathways and crosstalk genes between IgAN and SS. The results were further verified by external validation and immunohistochemistry (IHC) analysis. Additionally, immune cell analysis and transcription factor prediction were also conducted. The DEG analysis revealed 28 commonly up-regulated genes, while WGCNA identified 98 interactively positive-correlated module genes between IgAN and SS. The enrichment analysis suggested that these genes were mainly involved in the biological processes of response to virus and antigen processing and presentation. The external validation and IHC analysis identified 5 hub genes (PSMB8, PSMB9, IFI44, ISG15, and CD53). In the immune cell analysis, the effector memory CD8 T and T follicular helper cells were significantly activated, and the corresponding proportions showed positively correlations with the expressions of the 5 hub genes in the two autoimmune diseases. Together, our data identified the crosstalk genes, molecular pathways, and immune cells underlying the IgAN and SS, which provides valuable insights into the intricate mechanisms of these diseases and offers potential intervention targets.


Assuntos
Biologia Computacional , Glomerulonefrite por IGA , Imuno-Histoquímica , Mapas de Interação de Proteínas , Síndrome de Sjogren , Humanos , Glomerulonefrite por IGA/genética , Glomerulonefrite por IGA/metabolismo , Glomerulonefrite por IGA/patologia , Glomerulonefrite por IGA/imunologia , Síndrome de Sjogren/genética , Síndrome de Sjogren/imunologia , Síndrome de Sjogren/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes
9.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167454, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39122224

RESUMO

Increasing evidence indicated that neuroinflammation was involved in progression of Parkinson's disease (PD). Long noncoding RNAs (lncRNAs) played important roles in regulating inflammatory processes in multiple kinds of human diseases such as cancer diabetes, cardiomyopathy, and neurodegenerative disorders. The mechanisms by which lncRNAs regulated PD related inflammation and dopaminergic neuronal loss have not yet been fully elucidated. In current study, we intended to explore the function and potential mechanism of lncRNA KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) in regulating inflammasome activation in PD. Functional assays confirmed that knockdown of KCNQ1OT1 suppress microglial NLR family pyrin domain containing 3 (NLRP3) inflammasome activation and attenuated dopaminergic neuronal loss in PD model mice. As KCNQ1OT1 located in both cytoplasm and nucleus of microglia, we demonstrated that KCNQ1OT1 promoted microglial NLRP3 inflammasome activation by competitive binding with miR-186 in cytoplasm and inhibited pri-miR-186 mediated NLRP3 silencing through recruitment of DiGeorge syndrome critical region gene 8 (DGCR8) in nucleus, respectively. Our study found a novel lncRNA-pri-miRNA/mature miRNA-mRNA regulatory network in microglia mediated NLRP3 inflammasome activation and dopaminergic neuronal loss, provided further insights for the treatment of Parkinson's disease.


Assuntos
Inflamassomos , MicroRNAs , Proteína 3 que Contém Domínio de Pirina da Família NLR , Doença de Parkinson , RNA Longo não Codificante , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Inflamassomos/metabolismo , Inflamassomos/genética , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Humanos , Microglia/metabolismo , Microglia/patologia , Camundongos Endogâmicos C57BL , Masculino , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia
10.
Cell Rep ; 43(8): 114613, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39116206

RESUMO

Leptomeningeal metastases (LMs) remain a devastating complication of non-small cell lung cancer (NSCLC), particularly following osimertinib resistance. We conducted single-cell RNA sequencing on cerebrospinal fluid (CSF) from EGFR-mutant NSCLC with central nervous system metastases. We found that macrophages of LMs displayed functional and phenotypic heterogeneity and enhanced immunosuppressive properties. A population of lipid-associated macrophages, namely RNASE1_M, were linked to osimertinib resistance and LM development, which was regulated by Midkine (MDK) from malignant epithelial cells. MDK exhibited significant elevation in both CSF and plasma among patients with LMs, with higher MDK levels correlating to poorer outcomes in an independent cohort. Moreover, MDK could promote macrophage M2 polarization with lipid metabolism and phagocytic function. Furthermore, malignant epithelial cells in CSF, particularly after resistance to osimertinib, potentially achieved immune evasion through CD47-SIRPA interactions with RNASE1_M. In conclusion, we revealed a specific subtype of macrophages linked to osimertinib resistance and LM development, providing a potential target to overcome LMs.


Assuntos
Acrilamidas , Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Macrófagos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Acrilamidas/farmacologia , Acrilamidas/uso terapêutico , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Animais , Camundongos , Linhagem Celular Tumoral , Feminino , Carcinomatose Meníngea/tratamento farmacológico , Carcinomatose Meníngea/patologia , Carcinomatose Meníngea/secundário , Metabolismo dos Lipídeos/efeitos dos fármacos , Antígeno CD47/metabolismo , Antígeno CD47/genética , Masculino , Fagocitose/efeitos dos fármacos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Indóis , Pirimidinas
11.
J Dig Dis ; 25(6): 368-379, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39075019

RESUMO

OBJECTIVES: Few studies have been conducted on gene-environment interactions in the Chinese population with Crohn's disease (CD). We aimed to investigate the association between single nucleotide polymorphisms (SNPs) on the T helper 17 (Th17) cell and CD susceptibility/performance in Chinese individuals. METHODS: We conducted a case-control and case-only study at the Peking Union Medical College Hospital. Four SNPs related to the Th17 cell pathway genes were prioritized, including rs2284553 (interferon gamma receptor 2), rs7517847 (interleukin 23 receptor), rs7773324 (interferon regulatory factor 4), and rs4263839 (tumor necrosis factor superfamily 15). SNP frequency was calculated, and gene-environment interaction was assessed by multifactor dimensionality reduction analysis. RESULTS: Altogether 159 CD patients and 316 healthy controls were included. All analyzed SNPs were found in Hardy-Weinberg equilibrium (P > 0.05). The frequency of rs2284553-A allele and rs4263839-A allele were lower in CD patients compared with controls (P < 0.05). While the rs4263839-A allele was more prevalent in ileocolonic CD patients than in those with isolated small intestinal or colonic disease (P = 0.035). Gene-environment interactions revealed associations between rs2284553 and breastfeeding, sunshine exposure, and fridge-stored food, affecting age at diagnosis, intestinal involvement, and intestinal stricture. Interaction of rs4263839 and breastfeeding influenced small intestinal lesions and intestinal stricture in CD. CONCLUSIONS: This study provided information on the genetic background in Chinese CD patients. Incorporating these SNPs into predictive models may improve risk assessment and outcome prediction. Gene-environment interaction contributes to the understanding of CD pathogenesis.


Assuntos
Doença de Crohn , Interação Gene-Ambiente , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Células Th17 , Humanos , Doença de Crohn/genética , Masculino , Feminino , Adulto , Estudos de Casos e Controles , China , Pessoa de Meia-Idade , Adulto Jovem , Receptores de Interleucina/genética , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Adolescente , Fatores de Risco , População do Leste Asiático
12.
ACS Biomater Sci Eng ; 10(8): 4839-4854, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39079050

RESUMO

Intervertebral disc degeneration (IVDD) is a prevalent chronic condition causing spinal pain and functional impairment. This study investigates the role of extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (hUCMSCs) in regulating IVDD. Using RNA-seq, we analyzed differential expressions of lncRNA and miRNA in nucleus pulposus tissues from various mouse groups. We identified key regulatory molecules, MALAT1 and miRNA-138-5p, which contribute to IVDD. Further experiments demonstrated that MALAT1 can up-regulate SLC7A11 expression by competitively binding to miR-138-5p, forming a MALAT1/miR-138-5p/SLC7A11 coexpression regulatory network. This study elucidates the molecular mechanism by which hUCMSC-derived EVs regulate IVDD and could help develop novel therapeutic strategies for treating this condition. Our findings demonstrate that hUCMSCs-EVs inhibit ferroptosis in nucleus pulposus cells, thereby improving IVDD. These results highlight the therapeutic potential of hUCMSCs-EVs in ameliorating the development of IVDD, offering significant scientific and clinical implications for new treatments.


Assuntos
Vesículas Extracelulares , Degeneração do Disco Intervertebral , Células-Tronco Mesenquimais , MicroRNAs , RNA Longo não Codificante , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Degeneração do Disco Intervertebral/terapia , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Camundongos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Cordão Umbilical/citologia , Cordão Umbilical/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Regulação da Expressão Gênica , Ferroptose/genética
13.
Dev Neurobiol ; 84(4): 274-290, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39034481

RESUMO

In vivo astrocyte-to-neuron (AtN) conversion induced by overexpression of neural transcriptional factors has great potential for neural regeneration and repair. Here, we demonstrate that a single neural transcriptional factor, Dlx2, converts mouse striatal astrocytes into neurons in a dose-dependent manner. Lineage-tracing studies in Aldh1l1-CreERT2 mice confirm that Dlx2 can convert striatal astrocytes into DARPP32+ and Ctip2+ medium spiny neurons (MSNs). Time-course studies reveal a gradual conversion from astrocytes to neurons in 1 month, with a distinct intermediate state in between astrocytes and neurons. Interestingly, when Dlx2-infected astrocytes start to lose astrocytic markers, the other local astrocytes proliferate to maintain astrocytic levels in the converted areas. Unexpectedly, although Dlx2 efficiently reprograms astrocytes into neurons in the gray matter striatum, it also induces partial reprogramming of astrocytes in the white matter corpus callosum. Such partial reprogramming of white matter astrocytes is associated with neuroinflammation, which can be suppressed by the addition of NeuroD1. Our results highlight the importance of investigating AtN conversion in both the gray matter and white matter to thoroughly evaluate therapeutic potentials. This study also unveils the critical role of anti-inflammation by NeuroD1 during AtN conversion.


Assuntos
Astrócitos , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Homeodomínio , Neurônios , Fatores de Transcrição , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Homeodomínio/metabolismo , Neurônios/metabolismo , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Doenças Neuroinflamatórias/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Camundongos Transgênicos
14.
Microchem J ; 2032024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39035460

RESUMO

Tibetan strawberry (Fragaria nubicola) is a wild medicinal and edible plant in Tibet possessing various health benefits such as neuroprotection and anti-oxidation. However, there has been little study reported on its chemical constituents. To investigate the inhibitors of monoamine oxidase B (MAO-B) in Tibetan strawberry, we immobilized the enzyme onto cellulose filter paper for the first time to develop a new screening method. Two known glycosides (compounds 1 and 2) and one new iridoid glucoside (Compound 3) were fished out by this method, which was found to effectively inhibit MAO-B with IC50 values of 16.95 ± 0.93, 24.69 ± 0.20, and 46.77 ± 0.78 µM, respectively. Molecular docking and kinetic analysis were performed to reveal the inhibition mechanism of these compounds. Furthermore, compound 1 exhibited neuroprotective effects against 6-OHDA-induced injury on PC12 cells. The developed method exhibits the advantages of rapidness and effectiveness in screening of MAO-B inhibitors from complex herbal extracts.

15.
Nat Commun ; 15(1): 6263, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048573

RESUMO

Hydrogen spillover is an extraordinary effect in heterogeneous catalysis and hydrogen storage, which refers to the surface migration of metal particle-activated hydrogen atoms over the solid supports. Historical studies on this phenomenon have mostly been limited to reducible metal oxides where the long-distance proton-electron coupled migration mechanism has been established, yet the key question remains on how to surmount short-distance and defect-dependent hydrogen migration on nonreducible supports. By demerging hydrogen migration and hydrogenation reaction, here we demonstrate that the hydrogen spillover in nonreducible metal-organic frameworks (MOFs) can be finely modulated by the ligand functional groups or embedded water molecules, enabling significant long-distance (exceed 50 nm) movement of activated hydrogen. Furthermore, using sandwich nanostructured MOFs@Pt@MOFs as catalysts, we achieve highly selective hydrogenation of N-heteroarenes via controllable hydrogen spillover from Pt to MOFs-shell. We anticipate that this work will enhance the understanding of hydrogen spillover and shed light on de novo design of MOFs supported catalysts for many important reactions involving hydrogen.

16.
Eur J Pharmacol ; 979: 176839, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39033838

RESUMO

BACKGROUND: Severe endoplasmic reticulum (ER) stress elicits apoptosis to suppress lung cancer. Our previous research identified that Cepharanthine (CEP), a kind of phytomedicine, possessed powerful anti-cancer efficacy, for which the underlying mechanism was still uncovered. Herein, we investigated how CEP induced ER stress and worked against lung cancer. METHODS: The differential expression genes (DEGs) and enrichment were detected by RNA-sequence. The affinity of CEP and NRF2 was analyzed by cellular thermal shift assay (CETSA) and molecular docking. The function assay of lung cancer cells was measured by western blots, flow cytometry, immunofluorescence staining, and ferroptosis inhibitors. RESULTS: CEP treatment enriched DEGs in ferroptosis and ER stress. Further analysis demonstrated the target was NRF2. In vitro and in vivo experiments showed that CEP induced obvious ferroptosis, as characterized by the elevated iron ions, ROS, COX-2 expression, down-regulation of GPX4, and atrophic mitochondria. Moreover, enhanced Grp78, CHOP expression, ß-amyloid mass, and disappearing parallel stacked structures of ER were observed in CEP group, suggesting ER stress was aroused. CEP exhibited excellent anti-lung cancer efficacy, as evidenced by the increased apoptosis, reduced proliferation, diminished cell stemness, and prominent inhibition of tumor grafts in animal models. Furthermore, the addition of ferroptosis inhibitors weakened CEP-induced ER stress and apoptosis. CONCLUSION: In summary, our findings proved CEP drives ferroptosis through inhibition of NRF2 for induction of robust ER stress, thereby leading to apoptosis and attenuated stemness of lung cancer cells. The current work presents a novel mechanism for the anti-tumor efficacy of the natural compound CEP.


Assuntos
Benzilisoquinolinas , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Ferroptose , Neoplasias Pulmonares , Fator 2 Relacionado a NF-E2 , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Ferroptose/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Células A549 , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Simulação de Acoplamento Molecular , Benzodioxóis
17.
J Colloid Interface Sci ; 672: 589-599, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38852359

RESUMO

Failure of articular cartilage lubrication and inflammation are the main causes of osteoarthritis (OA), and integrated treatment realizing joint lubrication and anti-inflammation is becoming the most effective treat model. Inspired by low friction of human synovial fluid and adhesive chemical effect of mussels, our work reports a biomimetic lubricating system that realizes long-time lubrication, photothermal responsiveness and anti-inflammation property. To build the system, a dopamine-mediated strategy is developed to controllably graft hyaluronic acid on the surface of metal organic framework. The design constructs a biomimetic core-shell structure that has good dispersity and stability in water with a high drug loading ratio of 99%. Temperature of the solution rapidly increases to 55 °C under near-infrared light, and the hard-soft lubricating system well adheres to wear surfaces, and greatly reduces frictional coefficient by 75% for more than 7200 times without failure. Cell experiments show that the nanosystem enters cells by endocytosis, and releases medication in a sustained manner. The anti-inflammatory outcomes validate that the nanosystem prevents the progression of OA by down-regulating catabolic proteases and pain-related genes and up-regulating genes that are anabolic in cartilage. The study provides a bioinspired strategy to employ metal organic framework with controlled surface and structure for friction reduction and anti-inflammation, and develops a new concept of OA synergistic therapy model for practical applications.


Assuntos
Materiais Biomiméticos , Ácido Hialurônico , Osteoartrite , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Osteoartrite/metabolismo , Humanos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Animais , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Propriedades de Superfície , Lubrificação , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Tamanho da Partícula , Dopamina/química , Dopamina/farmacologia , Liberação Controlada de Fármacos
18.
Int J Surg ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913428

RESUMO

BACKGROUND: To some extent, robotic technique does offer certain benefits in rectal cancer surgery than laparoscopic one, while remains a topic of ongoing debate for rectal cancer patients who had undergone neoadjuvant chemoradiotherapy (NCRT). METHODS: Potential studies published until January 2024 were obtained from Web of Science, Cochrane Library, Embase and PubMed. Dichotomous and continuous variables were expressed as odds ratios (ORs) and weighted mean differences (WMDs) with 95% their confidence intervals (CIs), respectively. A random effects model was used if I2 statistic >50%, otherwise a fixed effects model. RESULTS: Eleven studies involving 1079 patients were analyzed. The robotic-assisted group had an 0.4 cm shorter distance from anal verge (95% CI: -0.680 to -0.114, P=0.006) and 1.94 times higher complete total mesorectal excision (TME) rate (OR=1.936, 95% CI: 1.061 to 3.532, P=0.031). However, the operation time in the robotic-assisted group was 54 minutes longer (95% CI: 20.489 to 87.037, P=0.002) than laparoscopic group. In addition, the robotic-assisted group had a lower open conversion rate (OR=0.324, 95% CI: 0.129 to 0.816, P=0.017) and a shorter length of hospital stay (WMD=-1.127, 95% CI: -2.071 to -0.184, P=0.019). CONCLUSION: Robot-assisted surgery offered several advantages over laparoscopic surgery for locally advanced mid-low rectal cancer following NCRT in terms of resection of lower tumours with improved TME completeness, lower open conversion rate and shorter hospital stay, despite longer operative time.

19.
Huan Jing Ke Xue ; 45(6): 3562-3570, 2024 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-38897776

RESUMO

Studying the effects of different modified materials on the physicochemical properties and fungal community structure of saline-alkali soil can provide theoretical basis for reasonable improvement of saline-alkali soil. High-throughput sequencing technology was used to explore the effects of five treatments, namely, control (CK), desulfurization gypsum (T1), soil ameliorant (T2), organic fertilizer (T3), and desulfurization gypsum compounds soil ameliorant and organic fertilizer (T4), on soil physicochemical properties and fungal community diversity, composition, and structure of saline-alkali soil in Hetao Plain, Inner Mongolia. The results showed that compared with those in CK, the contents of available phosphorus, available potassium, organic matter, and alkali hydrolysis nitrogen were significantly increased in modified material treatments, and the T4 treatment significantly decreased soil pH. Modified treatments increased the Simpson and Shannon indexes of fungi but decreased the Chao1 index. The dominant fungi were Ascomycota, Basidiomycota, and Mortierellomycota, and the dominant genera were Mortierella, Conocybe, Botryotrichum, Fusarium, and Pseudogymnoascus. The application of modified materials increased the relative abundance of Ascomycota, Basidiomycota, Fusarium, and Pseudogymnoascus, while decreasing the relative abundance of Mortierellomycota, Chytridiomycota, and Mortierella. LEfSe analysis showed that modified treatments altered the fungal community biomarkers. Correlation analysis showed that pH and available potassium were the main environmental factors affecting fungal community structure. The results can provide scientific basis for improving saline-alkali soil and increasing soil nutrients in Hetao Plain, Inner Mongolia.


Assuntos
Álcalis , Fungos , Microbiologia do Solo , Solo , Solo/química , Fungos/classificação , Álcalis/química , China , Fertilizantes , Dinâmica Populacional , Micobioma , Ascomicetos , Basidiomycota , Salinidade
20.
Biomolecules ; 14(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38927012

RESUMO

Gastric cancer (GC) ranks as the third most prevalent malignancy and a leading cause of cancer-related mortality worldwide. However, the majority of patients with GC are diagnosed at an advanced stage, highlighting the urgent need for effective perioperative and postoperative chemotherapy to prevent relapse and metastasis. The current treatment strategies have limited overall efficacy because of intrinsic or acquired drug resistance. Recent evidence suggests that dysregulated long non-coding RNAs (lncRNAs) play a significant role in mediating drug resistance in GC. Therefore, there is an imperative to explore novel molecular mechanisms underlying drug resistance in order to overcome this challenging issue. With advancements in deep transcriptome sequencing technology, lncRNAs-once considered transcriptional noise-have garnered widespread attention as potential regulators of carcinogenesis, including tumor cell proliferation, metastasis, and sensitivity to chemo- or radiotherapy through multiple regulatory mechanisms. In light of these findings, we aim to review the mechanisms by which lncRNAs contribute to drug therapy resistance in GC with the goal of providing new insights and breakthroughs toward overcoming this formidable obstacle.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA