Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 239: 120031, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172374

RESUMO

Anaerobic ammonium oxidation (anammox) as a low-carbon and energy-saving technology, has shown unique advantages in the treatment of high ammonia wastewater. However, wastewater usually contains complex heavy metals (HMs), which pose a potential risk to the stable operation of the anammox system. This review systematically re-evaluates the HMs toxicity level from the inhibition effects and the inhibition recovery process, which can provide a new reference for engineering. From the perspective of anammox cell structure (extracellular, anammoxosome membrane, anammoxosome), the mechanism of HMs effects on cellular substances and metabolism is expounded. Furthermore, the challenges and research gaps for HMs inhibition in anammox research are also discussed. The clarification of material flow, energy flow and community succession under HMs shock will help further reveal the inhibition mechanism. The development of new recovery strategies such as bio-accelerators and bio-augmentation is conductive to breaking through the engineered limitations of HMs on anammox. This review provides a new perspective on the recognition of toxicity and mechanism of HMs in the anammox process, as well as the promotion of engineering applicability.


Assuntos
Compostos de Amônio , Metais Pesados , Águas Residuárias , Oxirredução , Oxidação Anaeróbia da Amônia , Anaerobiose , Nitrogênio/metabolismo , Reatores Biológicos , Compostos de Amônio/metabolismo , Desnitrificação , Esgotos/química
2.
Comput Biol Med ; 147: 105799, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35792472

RESUMO

PURPOSE: Deformable image registration (DIR) plays an important role in assisting disease diagnosis. The emergence of the Transformer enables the DIR framework to extract long-range dependencies, which relieves the limitations of intrinsic locality caused by convolution operation. However, suffering from the interference of missing or spurious connections, it is a challenging task for Transformer-based methods to capture the high-quality long-range dependencies. METHODS: In this paper, by staking the graph convolution Transformer (Graformer) layer at the bottom of the feature extraction network, we propose a Graformer-based DIR framework, named GraformerDIR. The Graformer layer is consist of the Graformer module and the Cheby-shev graph convolution module. Among them, the Graformer module is designed to capture high-quality long-range dependencies. Cheby-shev graph convolution module is employed to further enlarge the receptive field. RESULTS: The performance and generalizability of GraformerDIR have been evaluated on publicly available brain datasets including the OASIS, LPBA40, and MGH10 datasets. Compared with VoxelMorph, the GraformerDIR has obtained performance improvements of 4.6% in Dice similarity coefficient (DSC) and 0.055 mm in the average symmetric surface distance (ASD) while reducing the non-positive rate of Jacobin determinant (Npr.Jac) index about 60 times on publicly available OASIS dataset. On unseen dataset MGH10, the GraformerDIR has obtained the performance improvements of 4.1% in DSC and 0.084 mm in ASD compared with VoxelMorph, which demonstrates the GraformerDIR with better generalizability. The promising performance on the clinical cardiac dataset ACDC indicates the GraformerDIR is practicable. CONCLUSION: With the advantage of Transformer and graph convolution, the GraformerDIR has obtained comparable performance with the state-of-the-art method VoxelMorph.


Assuntos
Processamento de Imagem Assistida por Computador , Planejamento da Radioterapia Assistida por Computador , Algoritmos , Cabeça , Processamento de Imagem Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/métodos
3.
Med Phys ; 49(2): 952-965, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34951034

RESUMO

PURPOSE: Imaging registration has a significant contribution to guide and support physicians in the process of decision-making for diagnosis, prognosis, and treatment. However, existing registration methods based on the convolutional neural network cannot extract global features effectively, which significantly influences registration performance. Moreover, the smoothness of the displacement vector field (DVF) fails to be ensured due to the miss folding penalty. METHODS: In order to capture abundant global information as well as local information, we have proposed a novel 3D deformable image registration network based on Transformer (TransDIR). In the encoding phase, the transformer with the atrous reduction attention block is designed to capture the long-distance dependencies that are crucial for extracting global information. A zero-padding position encoder is embedded into the transformer to capture the local information. In the decoding phase, an up-sampling module based on an attention mechanism is designed to increase the significance of ROIs. Because of adding folding penalty term into loss function, the smoothness of DVF is improved. RESULTS: Finally, we carried out experiments on OASIS, LPBA40, MGH10, and MM-WHS open datasets to validate the effectiveness of TransDIR. Compared with LapIRN, the DSC score is improved by 1.1% and 0.9% on OASIS and LPBA40, separately. In addition, compared with VoxelMorph, the DSC score is improved by 2.8% on the basis of the folding index decreased by hundreds of times on MM-WHS. CONCLUSIONS: The results show that the TransDIR achieves robust registration and promising generalizability compared with LapIRN and VoxelMorph.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X
4.
J Xray Sci Technol ; 29(6): 1065-1078, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34719432

RESUMO

BACKGROUND: Convolutional neural network has achieved a profound effect on cardiac image segmentation. The diversity of medical imaging equipment brings the challenge of domain shift for cardiac image segmentation. OBJECTIVE: In order to solve the domain shift existed in multi-modality cardiac image segmentation, this study aims to investigate and test an unsupervised domain adaptation network RA-SIFA, which combines a parallel attention module (PAM) and residual attention unit (RAU). METHODS: First, the PAM is introduced in the generator of RA-SIFA to fuse global information, which can reduce the domain shift from the respect of image alignment. Second, the shared encoder adopts the RAU, which has residual block based on the spatial attention module to alleviate the problem that the convolution layer is insensitive to spatial position. Therefore, RAU enables to further reduce the domain shift from the respect of feature alignment. RA-SIFA model can realize the unsupervised domain adaption (UDA) through combining the image and feature alignment, and then solve the domain shift of cardiac image segmentation in a complementary manner. RESULTS: The model is evaluated using MM-WHS2017 datasets. Compared with SIFA, the Dice of our new RA-SIFA network is improved by 8.4%and 3.2%in CT and MR images, respectively, while, the average symmetric surface distance (ASD) is reduced by 3.4 and 0.8mm in CT and MR images, respectively. CONCLUSION: The study results demonstrate that our new RA-SIFA network can effectively improve the accuracy of whole-heart segmentation from CT and MR images.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Atenção , Coração/diagnóstico por imagem , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA