Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 18(20): 13377-13383, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38728267

RESUMO

Magnetic materials offer a fertile playground for fundamental physics discovery, with not only electronic but also magnonic topological states intensively explored. However, one natural material with both electronic and magnonic nontrivial topologies is still unknown. Here, we demonstrate the coexistence of first-order topological magnon insulators (TMIs) and electronic second-order topological insulators (SOTIs) in 2D honeycomb ferromagnets, giving rise to the nontrivial corner states being connected by the charge-free magnonic edge states. We show that, with C3 symmetry, the phase factor ± ϕ caused by the next nearest-neighbor Dzyaloshinskii-Moriya interaction breaks the pseudo-spin time-reversal symmetry T, which leads to the split of magnon bands, i.e., the emergence of TMIs with a nonzero Chern number of C=-1, in experimentally feasible candidates of MoI3, CrSiTe3, and CrGeTe3 monolayers. Moreover, protected by the C3 symmetry, the electronic SOTIs characterized by nontrivial corner states are obtained, bridging the topological aspect of fermions and bosons with a high possibility of innovative applications in spintronics devices.

2.
Nano Lett ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619844

RESUMO

Recent advances in the manipulation of the orbital angular momentum (OAM) within the paradigm of orbitronics presents a promising avenue for the design of future electronic devices. In this context, the recently observed orbital Hall effect (OHE) occupies a special place. Here, focusing on both the second-order topological and quantum anomalous Hall insulators in two-dimensional ferromagnets, we demonstrate that topological phase transitions present an efficient and straightforward way to engineer the OHE, where the OAM distribution can be controlled by the nature of the band inversion. Using first-principles calculations, we identify Janus RuBrCl and three septuple layers of MnBi2Te4 as experimentally feasible examples of the proposed mechanism of OHE engineering by topology. With our work, we open up new possibilities for innovative applications in topological spintronics and orbitronics.

3.
Mater Horiz ; 11(9): 2242-2247, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38421336

RESUMO

The structural diversity and controllability in two-dimensional (2D) materials offers an intriguing platform for exploring a wide range of topological phenomena. The layer degree of freedom, as a novel technique for material manipulation, requires further investigation regarding its association with topological states. Here, using first-principles calculations and a tight-binding model, we propose a novel mechanism that couples the second-order topological corner states with the layer degree of freedom. By analyzing the edge states, topological indices, and spectra of nanoflakes, we identify ferromagnetic H'-Co2XF2 (X = C, N) as 2D second-order topological insulators with intrinsic ferroelectricity. Moreover, the topological corner states strongly couple with the layer degree of freedom, and, remarkably, ferroelectricity provides a nonvolatile handle to manipulate the layer-polarized corner states. These findings open an avenue for the manipulation of second-order topological states and establish a bridge between ferroelectricity and nontrivial topology.

4.
Small ; 19(14): e2206574, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36642812

RESUMO

The understanding and manipulate of the second-order corner states are central to both fundamental physics and future topotronics applications. Despite the fact that numerous second-order topological insulators (SOTIs) are achieved, the efficient engineering in a given material remains elusive. Here, the emergence of 2D multiferroics SOTIs in SbAs and BP5 monolayers is theoretically demonstrated, and an efficient and straightforward way for engineering the nontrivial corner states by ferroelasticity and ferroelectricity is remarkably proposed. With ferroelectric polarization of SbAs and BP5 monolayers, the nontrivial corner states emerge in the mirror symmetric corners and are perpendicular to orientations of the in-plane spontaneous polarization. And remarkably the spatial distribution of the corner states can be effectively tuned by a ferroelastic switching. At the intermediate states of both ferroelectric and ferroelastic switchings, the corner states disappear. These finding not only combines exotic SOTIs with multiferroics but also pave the way for experimental discovery of 2D tunable SOTIs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA