Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Food ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982281

RESUMO

China's imports of livestock feed, particularly protein-rich feeds, pose challenges to global environmental sustainability. Achieving protein self-sufficiency for food and feed in China without exceeding environmental boundaries requires integrated measures and optimization of China's food system. Here we propose holistic food system innovation strategies consisting of three components-technological innovation, integrated spatial planning and demand-side options-to reduce protein import dependency and promote global environmental sustainability. We find that food system innovations can close almost 80% of China's future protein gaps while reducing 57-85% of agricultural import-embodied environmental impacts. Deploying these innovations would also reduce greenhouse gas emissions (22-27%) and people's harmful exposure to ammonia (73-81%) compared with the baseline scenario in 2050. Technological innovations play a key role in closing protein gaps, while integrated crop-livestock spatial planning is imperative for achieving environmental and health targets.

2.
Nat Food ; 5(6): 499-512, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38849568

RESUMO

The contribution of crop and livestock production to the exceedance of the planetary boundary for phosphorus (P) in China is still unclear, despite the country's well-known issues with P fertilizer overuse and P-related water pollution. Using coupled models at sub-basin scales we estimate that livestock production increased the consumption of P fertilizer fivefold and exacerbated P losses twofold from 1980 to 2017. At present, China's crop-livestock system is responsible for exceeding what is considered a 'just' threshold for fertilizer P use by 30% (ranging from 17% to 68%) and a 'safe' water quality threshold by 45% (ranging from 31% to 74%) in 25 sub-basins in China. Improving the crop-livestock system will keep all sub-basins within safe water quality and just multigenerational limits for P in 2050.


Assuntos
Produtos Agrícolas , Fertilizantes , Fósforo , Fósforo/análise , China , Produtos Agrícolas/crescimento & desenvolvimento , Animais , Fertilizantes/análise , Gado , Agricultura/métodos , Qualidade da Água
3.
Environ Sci Technol ; 58(22): 9689-9700, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38780255

RESUMO

Nitrogen (N) supports food production, but its excess causes water pollution. We lack an understanding of the boundary of N for water quality while considering complex relationships between N inputs and in-stream N concentrations. Our knowledge is limited to regional reduction targets to secure food production. Here, we aim to derive a spatially explicit boundary of N inputs to rivers for surface water quality using a bottom-up approach and to explore ways to meet the derived N boundary while considering the associated impacts on both surface water quality and food production in China. We modified a multiscale nutrient modeling system simulating around 6.5 Tg of N inputs to rivers that are allowed for whole of China in 2012. Maximum allowed N inputs to rivers are higher for intensive food production regions and lower for highly urbanized regions. When fertilizer and manure use is reduced, 45-76% of the streams could meet the N water quality threshold under different scenarios. A comparison of "water quality first" and "food production first" scenarios indicates that trade-offs between water quality and food production exist in 2-8% of the streams, which may put 7-28% of crop production at stake. Our insights could support region-specific policies for improving water quality.


Assuntos
Fertilizantes , Nitrogênio , Rios , China , Rios/química , Qualidade da Água , Agricultura , Modelos Teóricos
4.
Bioresour Technol ; 402: 130840, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750829

RESUMO

The constant ammonia gas (NH3) and greenhouse gases (GHG) emissions were considered as a deep-rooted problem in composting which caused air pollution and global climate change. To achieve the mitigation of NH3 and GHG, a novel additive derived from wasted straw, with modified structure and functional groups, has been developed. Results showed that the adsorption capacity of modified lignin (ML) for both ammonium and nitrate was significantly increased by 132.5-360.8 % and 313.7-454.3 % comparing with biochar (BC) and phosphogypsum (PG) after reconstructing porous structure and grafting R-COOH, R-SO3H functional groups. The application of ML could reduce 36.3 % NH3 emission during composting compared with control. Furthermore, the synergetic mitigation NH3 and GHG in ML treatment resulted in a reduction of global warming potential (GWP) by 31.0-64.6 % compared with BC and PG. These findings provide evidence that ML can be a feasible strategy to effectively alleviate NH3 and GHG emissions in composting.


Assuntos
Amônia , Compostagem , Gases de Efeito Estufa , Lignina , Compostagem/métodos , Lignina/química , Carvão Vegetal/química , Adsorção , Solo/química , Efeito Estufa
5.
Waste Manag ; 182: 197-206, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670003

RESUMO

The significant increase in antibiotic resistance genes (ARGs) in organic solid wastes (OSWs) has emerged as a major threat to the food chain. Aerobic composting is a widely used technology for OSW management, with the potential to influence the fate of AGRs. However, the variability of the ARG elimination effects reported in different studies has highlighted the uncertainty regarding the effects of composting on ARGs. To identify the potential of composting in reducing ARG and the factors (e.g., composting technologies and physiochemical properties) influence ARG changes, a meta-analysis was conducted with a database including 4,232 observations. The abundances of ARGs and mobile genetic elements (MGEs) can be substantially reduced by 74.3% and 78.8%, respectively, via aerobic composting. During composting, the ARG levels in chicken and swine manure tended to be reduced more significantly (81.7% and 78.0%) compared to those in cattle manure (52.3%) and sewage sludge (32.6%). The reduction rate of sulfonamide resistant genes was only 35.3%, which was much lower than those of other types. MGEs and composting duration (CD) were identified as the most important factors driving ARG changes during composting. These findings provide a comprehensive insight into the effects of composting on ARG reduction, which may help prevent the transmission in food systems.


Assuntos
Compostagem , Resistência Microbiana a Medicamentos , Esterco , Compostagem/métodos , Resistência Microbiana a Medicamentos/genética , Esterco/microbiologia , Animais , Aerobiose , Resíduos Sólidos/análise , Bovinos , Galinhas , Genes Bacterianos , Antibacterianos , Eliminação de Resíduos/métodos , Suínos
6.
Nat Food ; 5(3): 241-250, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486125

RESUMO

Returning organic nutrient sources (for example, straw and manure) to rice fields is inevitable for coupling crop-livestock production. However, an accurate estimate of net carbon (C) emissions and strategies to mitigate the abundant methane (CH4) emission from rice fields supplied with organic sources remain unclear. Here, using machine learning and a global dataset, we scaled the field findings up to worldwide rice fields to reconcile rice yields and net C emissions. An optimal organic nitrogen (N) management was developed considering total N input, type of organic N source and organic N proportion. A combination of optimal organic N management with intermittent flooding achieved a 21% reduction in net global warming potential and a 9% rise in global rice production compared with the business-as-usual scenario. Our study provides a solution for recycling organic N sources towards a more productive, carbon-neutral and sustainable rice-livestock production system on a global scale.


Assuntos
Nitrogênio , Oryza , Animais , Nitrogênio/análise , Agricultura , Solo , Carbono , Água , Óxido Nitroso/análise , Fertilizantes/análise , Gado
7.
Nat Food ; 4(11): 1007-1017, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37828076

RESUMO

Eliminating both overt and hidden hunger is at the core of the global food and nutrition security agenda. Yet, the collective state of nutrition security at the population level is not known. Here we quantify food-based availability of 11 essential nutrients for 156 countries using a food production-consumption-nutrition model, followed by assessment of the nutrient availability status as a ratio of recommended intake. For the baseline year 2017, global per capita availability was adequate for calorie and protein but in severe deficit for vitamin A and calcium (intake ratios, <0.60, where 1.0 is adequate) and moderate deficit for vitamin B12 (intake ratio, 0.76). At the country level, more than half of the 156 countries were in various degrees of deficit for all nine micronutrients. Disparities across regions or countries were enormous. We explore intervention strategies from an agriculture-food system perspective and discuss the daunting challenges of addressing nutrition security broadly.


Assuntos
Nutrientes , Estado Nutricional , Humanos , Micronutrientes , Ingestão de Energia , Agricultura
8.
Proc Natl Acad Sci U S A ; 120(43): e2304826120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844251

RESUMO

Future food farming technology faces challenges that must integrate the core goal of keeping the global temperature increase within 1.5 °C without reducing food security and nutrition. Here, we show that boosting the production of insects and earthworms based on food waste and livestock manure to provide food and feed in China will greatly contribute to meeting the country's food security and carbon neutrality pledges. By substituting domestic products with mini-livestock (defined as earthworms and insects produced for food or feed) protein and utilizing the recovered land for bioenergy production plus carbon capture and storage, China's agricultural sector could become carbon-neutral and reduce feed protein imports to near zero. This structural change may lead to reducing greenhouse gas emissions by 2,350 Tg CO2eq per year globally when both domestic and imported products are substituted. Overall, the success of mini-livestock protein production in achieving carbon neutrality and food security for China and its major trading partners depends on how the substitution strategies will be implemented and how the recovered agricultural land will be managed, e.g., free use for afforestation and bioenergy or by restricting this land to food crop use. Using China as an example, this study also demonstrates the potential of mini-livestock for decreasing the environmental burden of food production in general.


Assuntos
Gado , Eliminação de Resíduos , Animais , Efeito Estufa , Alimentos , Carbono , Biodiversidade , Temperatura , Agricultura , Segurança Alimentar , China
9.
Sci Total Environ ; 904: 166827, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37683870

RESUMO

Reactive nitrogen (Nr) released to the environment is a cause of multiple environmental threats. While Nr flows are often only analyzed in an agricultural context, consumption and emission takes place in the urban environment, and opportunities for Nr recycling and effective policy implementation for mitigation often appear in cities. Since little information is available on the bigger picture of Nr flows through the urban environment, these opportunities often remain unexploited. Here we developed a framework to model Nr pathways through urban and surrounding areas, which we applied to four test areas (Beijing and Shijiazhuang (China), Vienna (Austria), and Zielona Góra (Poland)). Using indicators such as recycling rates and Nr surplus, we estimated environmental risks and recycling potentials based on Nr flows and their entry and exit points. Our findings show marked differences between the core and surrounding areas of each city, with the former being a site of Nr consumption with largest flows associated with households, and the latter a site of (agricultural) production with largest flows associated with industry (fertilizers) and urban plants. As a result, Nr transgresses the core areas in a rather linear manner with only 0-5 % being re-used, with inputs from Nr contained in food and fuels and outputs most commonly as non-reactive N2 emissions to the atmosphere from wastewater treatment and combustion processes. While the peri-urban areas show a higher Nr recycling rate (6-14 %), Nr accumulation and emissions from cultivated land pose significant environmental challenges, indicating the need for mitigation measures. We found potential to increase nitrogen use efficiency through improved Nr management on cultivated areas and to increase Nr recycling using urine and sewage sludge as synthetic fertilizer substitutes. Hence our framework for urban nitrogen budgets not only allows for consistent budgeting but helps identify common patterns, potentially harmful flows and Nr recycling potential.

10.
Nat Food ; 4(9): 762-773, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37550541

RESUMO

The spatio-temporal distribution, flow and end use of phosphorus (P) embedded in traded agricultural products are poorly understood. Here we use global trade matrices to analyse the partial factor productivity of P (output per unit of P input) for crop and livestock products in 200 countries and their cumulative contributions to the export or import of agricultural products over 1961-2019. In these six decades, the trade of agricultural P products has increased global partial factor productivity for crop and livestock production and has theoretically saved 67 Tg P in fertilizers and 1.6 Tg P in feed. However, trade is now at risk of contributing to wasteful use of P resources globally due to a decline in trade optimality, as agricultural products are increasingly exported from low to high partial factor productivity countries and due to P embedded in imported agricultural products mainly lost to the environment without recycling. Integrated crop-livestock production systems and P-recycling technologies can help.


Assuntos
Agricultura , Fósforo , Produção Agrícola
12.
J Environ Manage ; 345: 118667, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37515883

RESUMO

Nitrogen (N) is essential for agricultural production. However, too much N can pollute waters. The Chinese government published several policies to reduce N losses from agricultural production to waters since 2015, which may influence river export of N to reservoirs and lakes and their pollution sources. This study aimed to quantify the trends of river export of N to five reservoirs in the Haihe basin and analyze the main sources of this N pollution from 2012 to 2017. This was done by upscaling the MARINA-Lakes (Model to Assess River Inputs of Nutrients to lAkes) model to the Haihe basin, including 22 sub-basins. From 2012 to 2017, river export of total dissolved nitrogen (TDN) to the Haihe reservoirs decreased by 11-51%, associated with a decreased contribution of point sources and an increased contribution of diffuse sources for the whole study area Sub-basins draining into Reservoir Pan-Da contributed over one-third to the total TDN export by rivers in 2012 and 2017. The share of diffuse sources in river export of TDN to the Guanting reservoir reached 63% in 2017. Among the TDN diffuse sources, the contribution of animal manure (a diffuse source) to river export of diffuse TDN increased to 28%, 25%, and 23% for the sub-basins of Reservoir Miyun, Pan-da, and Guanting from 2012 to 2017, respectively. Among the TDN point sources, direct manure discharges were the main contributors to the river export of point TDN to the Haihe reservoirs in 2012. By 2017, direct discharges of untreated human waste became another important point source, especially for the Lake Baiyangdian and Reservoir Gang-Huang. This study concludes the need for specific agricultural N management options for different reservoirs of the Haihe basin.


Assuntos
Poluentes Químicos da Água , Humanos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Nitrogênio/análise , Esterco , China , Rios
13.
Nat Food ; 4(7): 552-564, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37400718

RESUMO

Bioenergy with carbon capture and storage, among other negative-emission technologies, is required for China to achieve carbon neutrality-yet it may hinder land-based Sustainable Development Goals. Using modelling and scenario analysis, we investigate how to mitigate the potential adverse impacts on the food system of ambitious bioenergy deployment in China and its trading partners. We find that producing bioenergy domestically while sticking to the food self-sufficiency ratio redlines would lower China's daily per capita calorie intake by 8% and increase domestic food prices by 23% by 2060. Removing China's food self-sufficiency ratio restrictions could halve the domestic food dilemma but risks transferring environmental burdens to other countries, whereas halving food loss and waste, shifting to healthier diets and narrowing crop yield gaps could effectively mitigate these external effects. Our results show that simultaneously achieving carbon neutrality, food security and global sustainability requires a careful combination of these measures.


Assuntos
Carbono , Tecnologia , Carbono/análise , Condições Sociais , China
14.
Innovation (Camb) ; 3(2): 100220, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35295193

RESUMO

Animal-derived food production accounts for one-third of global anthropogenic greenhouse gas (GHG) emissions. Diet followed in China is ranked as low-carbon emitting (i.e., 0.21 t CO2-eq per capita in 2018, ranking at 145th of 168 countries) due to the low average animal-derived food consumption rate, and preferential consumption of animal-derived foods with lower GHG emissions (i.e., pork and eggs versus beef and milk). However, the projected increase in GHG emissions from livestock production poses great challenges for achieving China's "carbon neutrality" pledge. We propose that the livestock sector in China may achieve "climate neutrality" with net-zero warming around 2050 by implementing healthy diet and mitigation strategies to control enteric methane emissions.

15.
Nat Food ; 3(2): 152-160, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-37117957

RESUMO

Livestock production in China is increasingly located near urban areas, exposing human populations to nitrogen pollution via air and water. Here we analyse livestock and human population data across 2,300 Chinese counties to project the impact of alternative livestock distributions on nitrogen emissions. In 2012 almost half of China's livestock production occurred in peri-urban regions, exposing 60% of the Chinese population to ammonia emissions exceeding UN guidelines. Relocating 5 billion animals by 2050 according to crop-livestock integration criteria could reduce nitrogen emissions by two-thirds and halve the number of people exposed to high ammonia emissions. Relocating 10 billion animals away from southern and eastern China could reduce ammonia exposure for 90% of China's population. Spatial planning can therefore serve as a powerful policy instrument to tackle nitrogen pollution and exposure of humans to ammonia.

16.
Sci Total Environ ; 807(Pt 2): 150710, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34619224

RESUMO

Ecological thresholds are useful indicators for water quality managers to define limits to nutrient pollution. A common approach to estimating ecological thresholds is using critical nutrient loads. Critical nutrient loads are typically defined as the loads at which the phytoplankton chlorophyll-a exceeds a certain concentration. However, national policies, such as in China, use chemical indicators (nitrogen and phosphorus concentrations) rather than ecological indicators (phytoplankton chlorophyll-a) to assess water quality. In this study, we uniquely define the critical nutrient loads based on maximum allowable nutrient concentrations for lake Baiyangdian. We assess whether current and future nutrient loads in this lake comply with the Chinese Water Quality standards. To this end, we link two models (MARINA-Lakes and PCLake+). The PCLake+ model was applied to estimate the critical nutrient loads related to ecological thresholds for total nitrogen, total phosphorus and chlorophyll-a. The current (i.e., 2012) and future (i.e., 2050) nutrient loads were derived from the water quality MARINA-Lakes model. Nitrogen loads exceeded the nitrogen threshold in 2012. Phosphorus loads were below all ecological thresholds in 2012. Ecological thresholds are exceeded in 2050 with limited environmental policies, and urbanization may increase nutrient loads above the ecological thresholds in 2050. Recycling and reallocating animal manure is needed to avoid future water pollution in Lake Baiyangdian. Our study highlights the need for effective policies for clean water based on policy-relevant indicators.


Assuntos
Lagos , Qualidade da Água , Clorofila A , Nutrientes , Fitoplâncton
17.
Bioresour Technol ; 344(Pt A): 126194, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34710594

RESUMO

Enhancing electron transfer through directly elevating electric potential has been verified to reduce gaseous emissions from composting. Reducing electric resistance of composting biomass might be a choice to further strengthening electron transfer. Here, the effects of chemical electrolytes addition on gaseous Nitrogen emission in electric field assistant composting were investigated. Results suggest that adding acidic electrolyte (ferric chloride) significantly reduced ammonia (NH3) emission by 72.1% but increased nitrous oxide (N2O) emission (by 24-fold) (P < 0.05), because of a dual effect on nitrifier activity: i) an elevated abundance and proportion of ammonia oxidizing bacteria Nitrosomonadaceae, and ii) delayed growth of nitrite oxidizing bacteria. Neutral and alkaline electrolytes had no negative or positive effect on N2O or NH3 emission. Hence, there is a potential trade-off between NH3 and N2O mitigation if using ferric chloride as acidic electrolyte, and electrolyte addition should aim to enhance electron production promote N2O mitigation.


Assuntos
Compostagem , Amônia/análise , Nitritos , Nitrogênio/análise , Óxido Nitroso/análise , Solo
18.
Sci Total Environ ; 812: 151450, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742964

RESUMO

Ammonia (NH3) emissions mostly from agriculture result in air pollution and degrade human health. However, a full picture of soil NH3 emissions and associated abatement in cropping systems are not well understood. Here we present a thorough analysis of cropland NH3 emissions, discuss mitigation potential and assess associated abatement costs. Global cropland NH3 emissions account for 26% of total soil nitrogen losses, and are estimated as 22.8-31.2 Tg N yr-1 during 1996-2013 with the increase rate of 1.6% yr-1. Our results also show that, with no increase in nitrogen fertilizer, climate change can contribute to an additional 10% increase in cropland NH3 emissions in 2100 compared to the 2010 baseline. Instead, our scenario analysis show, cropland NH3 emissions will decline by 26% from 2010 to 2100 given a 0.5% yr-1 decrease in N fertilizer (with current technology and agricultural management level), considering the facts stronger control policies are expected to occur worldwide including Western Europe, the United States of America and China. The most ambitious management (with all known mitigation practices) can reduce cropland NH3 emissions by up (71%, 17.6 Tg N yr-1) at an abatement cost of US$524 billion. Our findings indicate that cropland NH3 emissions can be mitigated through adoption of appropriate human management practices with considerable economic costs, providing a critical reference for the future NH3 abatement strategies.


Assuntos
Amônia , Fertilizantes , Agricultura , Amônia/análise , China , Produtos Agrícolas , Fertilizantes/análise , Humanos , Nitrogênio/análise , Solo
19.
Sci Total Environ ; 804: 150125, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34520912

RESUMO

Phosphorus (P) from detergents contributes to water pollution and eutrophication. Understanding the impacts of detergent use on P inputs to surface waters and their main drivers is vital for supporting Sustainable Development Goals on clean water. This study aims to quantify past and future trends in P inputs to surface waters from detergent use in China. We modify the Model to Assess River Input of Nutrient to seAs (MARINA) model to assess the effects of past policies and explore options for the future on mitigating detergents P losses in China. The total consumption of detergents tripled from 2000 to 2018. However, P inputs to surface waters from detergent use decreased by 35% during these years. Although P losses vary across regions, most losses occurred in rural areas. Clearly, the P-free detergent policy which was initiated in the year 2000 has been effective. Without this policy, the detergent P losses would likely have increased fourfold during 2000-2018. In the future, detergent P inputs to surface waters in China may be further reduced to very low levels (95% reduction relative to 2018) by a combination of completely P-free detergents, an increasing urbanized population connected to sewage systems, and improving P removal in sewage treatment systems. Our results enhance the understanding of P pollution in surface waters from detergents and, illustrate the effectiveness of measures to control detergent P losses.


Assuntos
Detergentes , Fósforo , China , Eutrofização , Nitrogênio/análise , Fósforo/análise , Poluição da Água
20.
Bioresour Technol ; 346: 126576, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34923083

RESUMO

Growing demand for intensive animal farms and increased public awareness of environmental friendliness, have led to continuous iteration and refinement of the initially crude composting technology. However, the impact of the composting facility and energy input on eco-efficiency is limited. In this study, a LCA approach was conducted to investigate the eco-efficiency of four widely applied composting strategies: static heaps (SH), windrow composting (WC), membrane-covered composting (MC) and reactor composting (RC). The results showed that the environmental benefits of RC's were decreased by 11.3%, 21.7%, and 6.5% compared to SH, WC, and MC, respectively. Advanced composting technologies didn't substantially reduce direct economic costs, however, the eco-efficiency of RC was increased by 296.9%, 54.7%, and 87.6% compared to SH, WC, and MC, respectively. Overall, the results demonstrate that RC is a promising solution with high ecological efficiency that can contribute to the sustainable development of intensified livestock production.


Assuntos
Compostagem , Animais , Estágios do Ciclo de Vida , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA