Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Appl Microbiol Biotechnol ; 102(19): 8359-8372, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30062480

RESUMO

Carboligations catalyzed by aldolases or thiamine diphosphate (ThDP)-dependent enzymes are well-known in biocatalysis to deliver enantioselective chain elongation reactions. A pyruvate-dependent aldolase (2-oxo-3-deoxy-6-phosphogluconate aldolase [EDA]) introduces a chiral center when reacting with the electrophile, glyoxylic acid, delivering the (S)-enantiomer of (4S)-4-hydroxy-2-oxoglutarate [(S)-HOG]. The ThDP-dependent enzyme MenD (2-succinyl-5-enol-pyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate synthase (SEPHCHC synthase)) enables access to highly functionalized substances by forming intermolecular C-C bonds with Michael acceptor compounds by a Stetter-like 1,4- or a benzoin-condensation 1,2-addition of activated succinyl semialdehyde (ThDP adduct formed by decarboxylation of 2-oxoglutarate). MenD-catalyzed reactions are characterized by high chemo- and regioselectivity. Here, we report (S)-HOG, in situ formed by EDA, to serve as new donor substrate for MenD in 1,4-addition reactions with 2,3-trans-CHD (2,3-trans-dihydroxy-cyclohexadiene carboxylate) and acrylic acid. Likewise, (S)-HOG serves as donor in 1,2-additions with aromatic (benzaldehyde) and aliphatic (hexanal) aldehydes. This enzyme cascade of two subsequent C-C bond formations (EDA aldolase and a ThDP-dependent carboligase, MenD) generates two new stereocenters.


Assuntos
Ácidos Cicloexanocarboxílicos/metabolismo , Cetoácidos/metabolismo , Tiamina Pirofosfato/metabolismo , Biocatálise , Cicloexenos/metabolismo , Descarboxilação/fisiologia , Especificidade por Substrato
2.
Anal Chem ; 84(11): 5080-4, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22548504

RESUMO

Antibiotic resistance among pathogenic microorganisms is emerging as a major human healthcare concern. While there are a variety of resistance mechanisms, many can be related to single nucleotide polymorphisms and for which DNA microarrays have been widely deployed in bacterial genotyping. However, genotyping by means of allele-specific hybridization can suffer from the drawback that oligonucleotide probes with different nucleotide composition have varying thermodynamic parameters. This results in unpredictable hybridization behavior of mismatch probes. Consequently, the degree of discrimination between perfect match and mismatch probes is insufficient in some cases. We report here an on-chip enzymatic procedure to improve this discrimination in which false-positive hybrids are selectively digested. We find that the application of CEL1 Surveyor nuclease, a mismatch-specific endonuclease, significantly enhances the discrimination fidelity, as demonstrated here on a microarray for the identification of variants of carbapenem resistant Klebsiella pneumoniae carbapenemases and monitored by end point detection of fluorescence intensity. Further fundamental investigations applying total internal reflection fluorescence detection for kinetic real-time measurements confirmed the enzymatic enhancement for SNP discrimination.


Assuntos
Artefatos , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana/métodos , Klebsiella pneumoniae/isolamento & purificação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , beta-Lactamases/genética , Proteínas de Bactérias/química , Pareamento Incorreto de Bases , Endonucleases/metabolismo , Fluorescência , Genótipo , Klebsiella pneumoniae/genética , Hibridização de Ácido Nucleico , Sondas de Oligonucleotídeos/química , Polimorfismo de Nucleotídeo Único , Espectrometria de Fluorescência , Termodinâmica , Resistência beta-Lactâmica/genética , beta-Lactamases/química
3.
FEBS J ; 279(5): 766-78, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22212631

RESUMO

Transaldolase (Tal) is involved in the central carbon metabolism, i.e. the non-oxidative pentose phosphate pathway, and is therefore a ubiquitous enzyme. However, Tals show a low degree in sequence identity and vary in length within the enzyme family which previously led to the definition of five subfamilies. We wondered how this variation is conserved in structure and function. To answer this question we characterised and compared the Tals from Bacillus subtilis, Corynebacterium glutamicum and Escherichia coli, each belonging to a different subfamily, with respect to their biochemical properties and structures. The overall structure of the Tal domain, a (ß/α)(8) -barrel fold, is well conserved between the different subfamilies but the enzymes show different degrees of oligomerisation (monomer, dimer and decamer). The substrate specificity of the three enzymes investigated is quite similar which is reflected in the conservation of the active site, the phosphate binding site as well as the position of a catalytically important water molecule. All decameric enzymes characterised so far appear to be heat stable no matter whether they originate from a mesophilic or thermophilic organism. Hence, the thermostability might be due to the structural properties, i.e. tight packing, of these enzymes. Database The crystal structures have been deposited in the Protein Data Bank with accession code 3R8R for BsTal and 3R5E for CgTal.


Assuntos
Bacillus subtilis/enzimologia , Corynebacterium glutamicum/enzimologia , Escherichia coli/enzimologia , Proteínas Recombinantes/química , Transaldolase/química , Transaldolase/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Transaldolase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA