Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 23(10): 1402-1410, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39198713

RESUMO

Novel two-dimensional semiconductor crystals can exhibit diverse physical properties beyond their inherent semiconducting attributes, making their pursuit paramount. Memristive properties, as exemplars of these attributes, are predominantly manifested in wide-bandgap materials. However, simultaneously harnessing semiconductor properties alongside memristive characteristics to produce memtransistors is challenging. Herein we prepared a class of semiconducting III-V-derived van der Waals crystals, specifically the HxA1-xBX form, exhibiting memristive characteristics. To identify candidates for the material synthesis, we conducted a systematic high-throughput screening, leading us to 44 prospective III-V candidates; of these, we successfully synthesized ten, including nitrides, phosphides, arsenides and antimonides. These materials exhibited intriguing characteristics such as electrochemical polarization and memristive phenomena while retaining their semiconductive attributes. We demonstrated the gate-tunable synaptic and logic functions within single-gate memtransistors, capitalizing on the synergistic interplay between the semiconducting and memristive properties of our two-dimensional crystals. Our approach guides the discovery of van der Waals materials with unique properties from unconventional crystal symmetries.

2.
ACS Nano ; 18(24): 15705-15715, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38848500

RESUMO

Nanostructured high-/medium-entropy compounds have emerged as important catalytic materials for energy conversion technologies, but complex thermodynamic relationships involved with the element mixing enthalpy have been a considerable roadblock to the formation of stable single-phase structures. Cation exchange reactions (CERs), in particular with copper sulfide templates, have been extensively investigated for the synthesis of multicomponent heteronanoparticles with unconventional structural features. Because copper cations within the host copper sulfide templates are stoichiometrically released with incoming foreign cations in CERs to maintain the overall charge balance, the complete absence of Cu cations in the nanocrystals after initial CERs would mean that further compositional variation would not be possible by subsequent CERs. Herin, we successfully retained a portion of Cu cations within the silver sulfide (Ag2S) and gold sulfide (Au2S) phases of Janus Cu2-xS-M2S (M = Ag, Au) nanocrystals after the CERs, by partially suppressing the transformation of the anion sublattice that inevitably occurs during the introduction of external cations. Interestingly, the subsequent CERs on Janus Cu1.81S-M2S (M = Ag, Au), by utilizing the remnant Cu cations, allowed the construction of Janus Cu1.81S-AgxAuyS, which preserved the initial heterointerface. The synthetic strategy described in this work to suppress the complete removal of the Cu cation from the template could fabricate the CER-driven heterostructures with greatly diversified compositions, which exhibit unusual optical and catalytic properties.

3.
Nat Commun ; 15(1): 3887, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719801

RESUMO

In the early 2000s, low dimensional ferroelectric systems were predicted to have topologically nontrivial polar structures, such as vortices or skyrmions, depending on mechanical or electrical boundary conditions. A few variants of these structures have been experimentally observed in thin film model systems, where they are engineered by balancing electrostatic charge and elastic distortion energies. However, the measurement and classification of topological textures for general ferroelectric nanostructures have remained elusive, as it requires mapping the local polarization at the atomic scale in three dimensions. Here we unveil topological polar structures in ferroelectric BaTiO3 nanoparticles via atomic electron tomography, which enables us to reconstruct the full three-dimensional arrangement of cation atoms at an individual atom level. Our three-dimensional polarization maps reveal clear topological orderings, along with evidence of size-dependent topological transitions from a single vortex structure to multiple vortices, consistent with theoretical predictions. The discovery of the predicted topological polar ordering in nanoscale ferroelectrics, independent of epitaxial strain, widens the research perspective and offers potential for practical applications utilizing contact-free switchable toroidal moments.

4.
Appl Microsc ; 53(1): 9, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37731139

RESUMO

The structural analysis of nanocrystals via transmission electron microscopy (TEM) is a valuable technique for the material science field. Recently, two-dimensional images by scanning TEM (STEM) and energy-dispersive X-ray spectroscopy (EDS) have successfully extended to three-dimensional (3D) imaging by tomography. However, despite improving TEM instruments and measurement techniques, detector shadowing, the missing-wedge problem, X-ray absorption effects, etc., significant challenges still remain; therefore, the various required corrections should be considered and applied when performing quantitative tomography. Nonetheless, this 3D reconstruction technique can facilitate active site analysis and the development of nanocatalyst systems, such as water electrolysis and fuel cell. Herein, we present a 3D reconstruction technique to obtain tomograms of IrNi rhombic dodecahedral nanoframes (IrNi-RFs) from STEM and EDS images by applying simultaneous iterative reconstruction technique and total variation minimization algorithms. From characterizing the morphology and spatial chemical composition of the Ir and Ni atoms in the nanoframes, we were able to infer the origin of the physical and catalytic durability of IrNi-RFs. Also, by calculating the surface area and volume of the 3D reconstructed model, we were able to quantify the Ir-to-Ni composition ratio and compare it to the EDS measurement result.

5.
Micron ; 172: 103487, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37285687

RESUMO

Using a monochromator in transmission electron microscopy, a low-energy-loss spectrum can provide inter- and intra-band transition information for nanoscale devices with high energy and spatial resolutions. However, some losses, such as Cherenkov radiation, phonon scattering, and surface plasmon resonance superimposed at zero-loss peak, make it asymmetric. These pose limitations to the direct interpretation of optical properties, such as complex dielectric function and bandgap onset in the raw electron energy-loss spectra. This study demonstrates measuring the dielectric function of germanium telluride using an off-axis electron energy-loss spectroscopy method. The interband transition from the measured complex dielectric function agrees with the calculated band structure of germanium telluride. In addition, we compare the zero-loss subtraction models and propose a reliable routine for bandgap measurement from raw valence electron energy-loss spectra. Using the proposed method, the direct bandgap of germanium telluride thin film was measured from the low-energy-loss spectrum in transmission electron microscopy. The result is in good agreement with the bandgap energy measured using an optical method.

6.
Adv Sci (Weinh) ; 10(23): e2302906, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37271888

RESUMO

Metal-halide perovskite nanocrystals (NCs) have emerged as suitable light-emitting materials for light-emitting diodes (LEDs) and other practical applications. However, LEDs with perovskite NCs undergo environment-induced and ion-migration-induced structural degradation during operation; therefore, novel NC design concepts, such as hermetic sealing of the perovskite NCs, are required. Thus far, viable synthetic conditions to form a robust and hermetic semiconducting shell on perovskite NCs have been rarely reported for LED applications because of the difficulties in the delicate engineering of encapsulation techniques. Herein, a highly bright and durable deep-blue perovskite LED (PeLED) formed by hermetically sealing perovskite NCs with epitaxial ZnS shells is reported. This shell protects the perovskite NCs from the environment, facilitates charge injection/transport, and effectively suppresses interparticle ion migration during the LED operation, resulting in exceptional brightness (2916 cd m-2 ) at 451 nm and a high external quantum efficiency of 1.32%. Furthermore, even in the unencapsulated state, the LED shows a long operational lifetime (T50 ) of 1192 s (≈20 min) in the air. These results demonstrate that the epitaxial and hermetic encapsulation of perovskite NCs is a powerful strategy for fabricating high-performance deep-blue-emitting PeLEDs.

7.
Adv Mater ; 35(32): e2300200, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37154173

RESUMO

Complex oxide heterointerfaces contain a rich playground of novel physical properties and functionalities, which give rise to emerging technologies. Among designing and controlling the functional properties of complex oxide film heterostructures, vertically aligned nanostructure (VAN) films using a self-assembling bottom-up deposition method presents great promise in terms of structural flexibility and property tunability. Here, the bottom-up self-assembly is extended to a new approach using a mixture containing a 2Dlayer-by-layer film growth, followed by a 3D VAN film growth. In this work, the two-phase nanocomposite thin films are based on LaAlO3 :LaBO3 , grown on a lattice-mismatched SrTiO3001 (001) single crystal. The 2D-to-3D transient structural assembly is primarily controlled by the composition ratio, leading to the coexistence of multiple interfacial properties, 2D electron gas, and magnetic anisotropy. This approach provides multidimensional film heterostructures which enrich the emergent phenomena for multifunctional applications.

8.
Nat Commun ; 13(1): 5957, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216798

RESUMO

Nanomaterials with core-shell architectures are prominent examples of strain-engineered materials. The lattice mismatch between the core and shell materials can cause strong interface strain, which affects the surface structures. Therefore, surface functional properties such as catalytic activities can be designed by fine-tuning the misfit strain at the interface. To precisely control the core-shell effect, it is essential to understand how the surface and interface strains are related at the atomic scale. Here, we elucidate the surface-interface strain relations by determining the full 3D atomic structure of Pd@Pt core-shell nanoparticles at the single-atom level via atomic electron tomography. Full 3D displacement fields and strain profiles of core-shell nanoparticles were obtained, which revealed a direct correlation between the surface and interface strain. The strain distributions show a strong shape-dependent anisotropy, whose nature was further corroborated by molecular statics simulations. From the observed surface strains, the surface oxygen reduction reaction activities were predicted. These findings give a deep understanding of structure-property relationships in strain-engineerable core-shell systems, which can lead to direct control over the resulting catalytic properties.

9.
Nature ; 603(7902): 631-636, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35322249

RESUMO

Metastable phases-kinetically favoured structures-are ubiquitous in nature1,2. Rather than forming thermodynamically stable ground-state structures, crystals grown from high-energy precursors often initially adopt metastable structures depending on the initial conditions, such as temperature, pressure or crystal size1,3,4. As the crystals grow further, they typically undergo a series of transformations from metastable phases to lower-energy and ultimately energetically stable phases1,3,4. Metastable phases sometimes exhibit superior physicochemical properties and, hence, the discovery and synthesis of new metastable phases are promising avenues for innovations in materials science1,5. However, the search for metastable materials has mainly been heuristic, performed on the basis of experiences, intuition or even speculative predictions, namely 'rules of thumb'. This limitation necessitates the advent of a new paradigm to discover new metastable phases based on rational design. Such a design rule is embodied in the discovery of a metastable hexagonal close-packed (hcp) palladium hydride (PdHx) synthesized in a liquid cell transmission electron microscope. The metastable hcp structure is stabilized through a unique interplay between the precursor concentrations in the solution: a sufficient supply of hydrogen (H) favours the hcp structure on the subnanometre scale, and an insufficient supply of Pd inhibits further growth and subsequent transition towards the thermodynamically stable face-centred cubic structure. These findings provide thermodynamic insights into metastability engineering strategies that can be deployed to discover new metastable phases.

10.
Small Methods ; 6(5): e2200074, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35212468

RESUMO

Copper-based catalysts have attracted enormous attention due to their high selectivity for C2+ products during the electrochemical reduction of CO2 (CO2 RR). In particular, grain boundaries on the catalysts contribute to the generation of various Cu coordination environments, which have been found essential for C-C coupling. However, smooth-surfaced Cu2 O nanocrystals generally lack the ability for the surface reorganization to form multiple grain boundaries and desired Cu undercoordination sites. Flow chemistry armed with the unparalleled ability to mix reaction mixture can achieve a very high concentration of unstable reaction intermediates, which in turn are used up rapidly to lead to kinetics-driven nanocrystal growth. Herein, the synthesis of a unique hierarchical structure of Cu2 O with numerous steps (h-Cu2 O ONS) via flow chemistry-assisted modulation of nanocrystal growth kinetics is reported. The surface of h-Cu2 O ONS underwent rapid surface reconstruction under CO2 RR conditions to exhibit multiple heterointerfaces between Cu2 O and Cu phases, setting the preferable condition to facilitate C-C bond formation. Notably, the h-Cu2 O ONS obtained the increased C2 H4 Faradaic efficiency from 31.9% to 43.5% during electrocatalysis concurrent with the morphological reorganization, showing the role of the stepped surface. Also, the h-Cu2 O ONS demonstrated a 3.8-fold higher ethylene production rate as compared to the Cu2 O nanocube.

11.
ACS Appl Mater Interfaces ; 14(2): 2893-2907, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34985249

RESUMO

Biogas is an environmentally friendly and sustainable energy resource that can substitute or complement conventional fossil fuels. For practical uses, biogas upgrading, mainly through the effective separation of CO2 (0.33 nm) and CH4 (0.38 nm), is required to meet the approximately 90-95% purity of CH4, while CO2 should be concomitantly purified. In this study, a high CO2 perm-selective zeolite membrane was synthesized by heteroepitaxially growing a chabazite (CHA) zeolite seed layer with a synthetic precursor that allowed the formation of all-silica deca-dodecasil 3 rhombohedral (DDR) zeolite (with a pore size of 0.36 × 0.44 nm2). The resulting hydrophobic DDR@CHA hybrid membrane on an asymmetric α-Al2O3 tube was thin (ca. 2 µm) and continuous, thus providing both high flux and permselectivity for CO2 irrespective of the presence or absence of water vapor (the third largest component in the biogas streams). To the best of our knowledge, the CO2 permeance of (2.9 ± 0.3) × 10-7 mol m-2 s-1 Pa-1 and CO2/CH4 separation factor of ca. 274 ± 73 at a saturated water vapor partial pressure of ca. 12 kPa at 50 °C have the highest CO2/CH4 separation performance yet achieved. Furthermore, we explored the membrane module properties of the hybrid membrane in terms of the recovery and purity of both CO2 and CH4 under dry and wet conditions. Despite the high intrinsic membrane properties of the current hybrid membrane, reflected by the high permeance and SF, the corresponding module properties indicated that high-performance separation of CO2 and CH4 for the desired biogas upgrading was achieved at a limited processing capacity. This supports the importance of understanding the correlation between the membrane and module properties, as this will provide guidance for the optimal operating conditions.


Assuntos
Materiais Biocompatíveis/química , Reatores Biológicos , Dióxido de Carbono/isolamento & purificação , Metano/isolamento & purificação , Zeolitas/química , Dióxido de Carbono/química , Teste de Materiais , Metano/química , Tamanho da Partícula
12.
Small Methods ; 6(1): e2101236, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35041273

RESUMO

Designing an efficient and durable electrocatalyst for the sluggish oxygen evolution reaction (OER) at the anode remains the foremost challenge in developing proton exchange membrane (PEM) electrolyzers. Here, a highly active and durable cactus-like nanoparticle with an exposed heterointerface between the IrO2 and the low oxidation state Ru by introducing a trace amount of Mn dopant is reported. The heterostructure fabrication relies on initial mixing of the Ru and Ir phases before electrochemical oxidation to produce a conjoined Ru/IrO2 heterointerface. Benefitting from electron transfer at the heterointerface, the low oxidation state Ru species shows excellent initial activity, which is maintained even after 180 h of continuous OER test. In a half-cell test, the Mn-doped RuIr nanocactus (Mn-RuIr NCT) achieves a mass activity of 1.85 A mgIr+Ru -1 at 1.48 VRHE , which is 139-fold higher than that of commercial IrO2 . Moreover, the superior electrocatalytic performance of Mn-RuIr NCT in the PEM electrolysis system ensures its viability in practical uses. The results of the excellent catalytic performance for acidic OER indicate that the heterostructuring robust rutile IrO2 and the highly active Ru species with a low oxidation state on the catalyst surface drive a synergistic effect.

13.
Small Methods ; 5(7): e2100400, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34927989

RESUMO

Alloy structures with high catalytic surface areas and tunable surface energies can lead to high catalytic selectivity and activities. Herein, the synthesis of sponge-like Pd3 Pb multiframes (Pd3 Pb MFs) is reported by using the thermodynamically driven phase segregation, which exhibit high selectivity (93%) for the conversion of furfural to furfuryl alcohol (FOL) under mild conditions. The excellent catalytic performance of the Pd3 Pb MF catalysts is attributed to the high surface area and optimized surface energy of the catalyst, which is associated with the introduction of Pb to Pd. Density functional theory calculations show that the binding energy of FOL to the surface energy-tuned Pd3 Pb MF is sufficiently lowered to prevent side reactions such as over-hydrogenation of FOL.

14.
Adv Mater ; 33(48): e2105248, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34611943

RESUMO

Although metastable crystal structures have received much attention owing to their utilization in various fields, their phase-transition to a thermodynamic structure has attracted comparably little interest. In the case of nanoscale crystals, such an exothermic phase-transition releases high energy within a confined surface area and reconstructs surface atomic arrangement in a short time. Thus, this high-energy nanosurface may create novel crystal structures when some elements are supplied. In this work, the creation of a ruthenium carbide (RuCX , X < 1) phase on the surface of the Ru nanocrystal is discovered during phase-transition from cubic-close-packed to hexagonal-close-packed structure. When the electrocatalytic hydrogen evolution reaction (HER) is tested in alkaline media, the RuCX exhibits a much lower overpotential and good stability relative to the counterpart Ru-based catalysts and the state-of-the-art Pt/C catalyst. Density functional theory calculations predict that the local heterogeneity of the outermost RuCX surface promotes the bifunctional HER mechanism by providing catalytic sites for both H adsorption and facile water dissociation.

15.
Chem Asian J ; 16(22): 3630-3635, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34546639

RESUMO

Transition metal phosphides (TMPs) as ever-evolving electrocatalytic materials have attracted increasing attention in water splitting reactions owing to their cost-effective, highly active and stable catalytic properties. This work presents a facile synthetic route to NiCoP nanoparticles with Ru dopants which function as highly efficient electrocatalysts for oxygen evolution reaction (OER) in alkaline media. The Ru dopants induced a high content of Ni and Co vacancies in NiCoP nanoparticles, and the more defective Ru doped NiCoP phase than undoped NiCoP ones led to a greater number of catalytically active sites and improved electrical conductivity after undergoing electrochemical activation. The Ru doped NiCoP catalyst exhibited high OER catalytic performance in alkaline media with a low overpotential of 281 mV at 10 mA cm-2 and a Tafel slope of 42.7 mV dec-1 .

16.
Small ; 17(45): e2103400, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34569143

RESUMO

Strongly bound excitons are a characteristic hallmark of 2D semiconductors, enabling unique light-matter interactions and novel optical applications. Platinum diselenide (PtSe2 ) is an emerging 2D material with outstanding optical and electrical properties and excellent air stability. Bulk PtSe2 is a semimetal, but its atomically thin form shows a semiconducting phase with the appearance of a band-gap, making one expect strongly bound 2D excitons. However, the excitons in PtSe2 have been barely studied, either experimentally or theoretically. Here, the authors directly observe and theoretically confirm excitons and their ultrafast dynamics in mono-, bi-, and tri-layer PtSe2 single crystals. Steady-state optical microscopy reveals exciton absorption resonances and their thickness dependence, confirmed by first-principles calculations. Ultrafast transient absorption microscopy finds that the exciton dominates the transient broadband response, resulting from strong exciton bleaching and renormalized band-gap-induced exciton shifting. The overall transient spectrum redshifts with increasing thickness as the shrinking band-gap redshifts the exciton resonance. This study provides novel insights into exciton photophysics in platinum dichalcogenides.


Assuntos
Platina , Semicondutores , Ácido Hipocloroso , Microscopia
17.
ACS Nano ; 15(4): 6540-6550, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33784072

RESUMO

Silver-based nanomaterials have been versatile building blocks of various photoassisted energy applications; however, they have demonstrated poor electrochemical catalytic performance and stability, in particular, in acidic environments. Here we report a stable and high-performance electrochemical catalyst of silver telluride (AgTe) for the hydrogen evolution reaction (HER), which was synthesized with a nanoporous structure by an electrochemical synthesis method. X-ray spectroscopy techniques on the nanometer scale and high-resolution transmission electron microscopy revealed an orthorhombic structure of nanoporous AgTe with precise lattice constants. First-principles calculations show that the AgTe surface possesses highly active catalytic sites for the HER with an optimized Gibbs free energy change of hydrogen adsorption (-0.005 eV). Our nanoporous AgTe demonstrates exceptional stability and performance for the HER, an overpotential of 27 mV, and a Tafel slope of 33 mV/dec. As a stable catalyst for hydrogen production, AgTe is comparable to platinum-based catalysts and provides a breakthrough for high-performance electrochemical catalysts.

18.
Angew Chem Int Ed Engl ; 60(3): 1323-1331, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33026162

RESUMO

MFI type zeolites with 10-membered-ring pores (ca. 0.55 nm) have the ability to separate p-xylene (ca. 0.58 nm) from its bulkier isomers. Here, we introduced non-zeolitic micropores (ca. 0.6-1.5 nm) and mesopores (ca. 2-7 nm) to a conventional microporous MFI type zeolite membrane, yielding an unprecedented hierarchical membrane structure. The uniform, embedded non-zeolitic pores decreased defect formation considerably and facilitated molecular transport, resulting in high p-xylene perm-selectivity and molar flux. Specifically, compared to a conventional, crack network-containing MFI membranes of similar thickness (ca. 1 µm), the mesoporous MFI membranes showed almost double p-xylene permeance (ca. 1.6±0.4×10-7  mol m-2 s-1 Pa-1 ) and a high p-/o-xylene separation factor (ca. 53.8±7.3 vs. 3.5±0.5 in the conventional MFI membrane) at 225 °C. The embedded non-zeolitic pores allowed for decreasing the separation performance degradation, which was apparently related to coke formation.

19.
ACS Appl Mater Interfaces ; 13(2): 2437-2446, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33350809

RESUMO

Two-dimensional (2D) layered catalysts have been considered as a class of ideal catalysts for hydrogen evolution reaction (HER) because of their abundant active sites with almost zero Gibbs energy change for hydrogen adsorption. Despite the promising performance, the design of stable and economic electrochemical catalyst based on 2D materials remains to be resolved for industrial-scale hydrogen production. Here, we report layered platinum tellurides, mitrofanovite Pt3Te4, which serves as an efficient and stable catalyst for HER with an overpotential of 39.6 mV and a Tafel slope of 32.7 mV/dec together with a high current density exceeding 7000 mA/cm2. Pt3Te4 was synthesized as nanocrystals on a metallic molybdenum ditelluride (MoTe2) template by a rapid electrochemical method. X-ray diffraction and high-resolution transmission microscopy revealed that the Pt3Te4 nanocrystals have a unique layered structure with repeated monolayer units of PtTe and PtTe2. Theoretical calculations exhibit that Pt3Te4 with numerous edges shows near-zero Gibbs free-energy change of hydrogen adsorption, which shows the excellent HER performance as well as the extremely large exchange current density for massive hydrogen production.

20.
Nano Lett ; 20(10): 7413-7421, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32924501

RESUMO

Nanoframe alloy structures represent a class of high-performance catalysts for the oxygen reduction reaction (ORR), owing to their high active surface area, efficient molecular accessibility, and nanoconfinement effect. However, structural and chemical instabilities of nanoframes remain an important challenge. Here, we report the synthesis of PtCu nanoframes constructed with an atomically ordered intermetallic structure (O-PtCuNF/C) showing high ORR activity, durability, and chemical stability. We rationally designed the O-PtCuNF/C catalyst by combining theoretical composition predictions with a silica-coating-mediated synthesis. The O-PtCuNF/C combines intensified strain and ligand effects from the intermetallic PtCu L11 structure and advantages of the nanoframes, resulting in superior ORR activity to disordered alloy PtCu nanoframes (D-PtCuNF/C) and commercial Pt/C catalysts. Importantly, the O-PtCuNF/C showed the highest ORR mass activity among PtCu-based catalysts. Furthermore, the O-PtCuNF/C exhibited higher ORR durability and far less etching of constituent atoms than D-PtCuNF/C and Pt/C, attesting to the chemically stable nature of the intermetallic structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA