Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3790, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355759

RESUMO

Nanoparticles with high-index facets are intriguing because such facets can lend the structure useful functionality, including enhanced catalytic performance and wide-ranging optical tunability. Ligand-free solid-state syntheses of high index-facet nanoparticles, through an alloying-dealloying process with foreign volatile metals, are attractive owing to their materials generality and high yields. However, the role of foreign atoms in stabilizing the high-index facets and the dynamic nature of the transformation including the coarsening and facet regulation process are still poorly understood. Herein, the transformation of Pt salts to spherical seeds and then to tetrahexahedra, is studied in situ via gas-cell transmission electron microscopy. The dynamic behaviors of the alloying and dealloying process, which involves the coarsening of nanoparticles and consequent facet regulation stage are captured in the real time with a nanoscale spatial resolution. Based on additional direct evidence obtained using atom probe tomography and density functional theory calculations, the underlying mechanisms of the alloying-dealloying process are uncovered, which will facilitate broader explorations of high-index facet nanoparticle synthesis.


Assuntos
Ligas , Nanopartículas Metálicas , Ligas/química , Sais , Nanopartículas Metálicas/química , Fenômenos Físicos , Catálise
2.
Adv Mater ; 35(19): e2207927, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36906738

RESUMO

An unconventional "heteromorphic" superlattice (HSL) is realized, comprised of repeated layers of different materials with differing morphologies: semiconducting pc-In2 O3 layers interleaved with insulating a-MoO3 layers. Originally proposed by Tsu in 1989, yet never fully realized, the high quality of the HSL heterostructure demonstrated here validates the intuition of Tsu, whereby the flexibility of the bond angle in the amorphous phase and the passivation effect of the oxide at interfacial bonds serve to create smooth, high-mobility interfaces. The alternating amorphous layers prevent strain accumulation in the polycrystalline layers while suppressing defect propagation across the HSL. For the HSL with 7:7 nm layer thickness, the observed electron mobility of 71 cm2  Vs-1 , matches that of the highest quality In2 O3 thin films. The atomic structure and electronic properties of crystalline In2 O3 /amorphous MoO3 interfaces are verified using ab-initio molecular dynamics simulations and hybrid functional calculations. This work generalizes the superlattice concept to an entirely new paradigm of morphological combinations.

3.
Appl Microsc ; 50(1): 7, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33580437

RESUMO

Tantalum nitride (TaNx) thin films were grown utilizing an inductively coupled plasma (ICP) assisted direct current (DC) sputtering, and 20-100% improved microhardness values were obtained. The detailed microstructural changes of the TaNx films were characterized utilizing transmission electron microscopy (TEM), as a function of nitrogen gas fraction and ICP power. As nitrogen gas fraction increases from 0.05 to 0.15, the TaNx phase evolves from body-centered-cubic (b.c.c.) TaN0.1, to face-centered-cubic (f.c.c.) δ-TaN, to hexagonal-close-packing (h.c.p.) ε-TaN phase. By increasing ICP power from 100 W to 400 W, the f.c.c. δ- TaN phase becomes the main phase in all nitrogen fractions investigated. The higher ICP power enhances the mobility of Ta and N ions, which stabilizes the δ-TaN phase like a high-temperature regime and removes the micro-voids between the columnar grains in the TaNx film. The dense δ-TaN structure with reduced columnar grains and micro-voids increases the strength of the TaNx film.

4.
ACS Appl Mater Interfaces ; 10(36): 30640-30648, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30117322

RESUMO

Increased interest in two-dimensional (2D) materials and heterostructures for use as components of electrical devices has led to the use of an atomically mixed phase between semiconducting and metallic transition metal dichalcogenides that exhibited enhanced interfacial characteristics. To understand the lattice structure and properties of 2D materials on the atomic scale, diverse characterization methods such as Raman spectroscopy, high-resolution transmission electron microscopy (HR-TEM), and X-ray photoemission spectroscopy (XPS) have been applied. However, determination of the exact chemical distribution, which is a critical factor for the interfacial layer, was hindered by limitations of these typical methods. In this work, atom-probe tomography (APT) was introduced for the first time to analyze the three-dimensional atomic distribution and composition variation of the atomic-scale multilayered alloy structure W xNb(1- x)Se2. Composition profiles and theoretical calculations for each atom demonstrated the reaction kinetics and stoichiometric inhomogeneity of the W xNb(1- x)Se2 layer. The role of the intermediate layer was investigated by fabrication of a WSe2-based field-effect transistor. Introduction of W xNb(1- x)Se2 between metallic NbSe2 and semiconducting WSe2 layers resulted in improved charge transport with lowering of the contact barrier.

5.
Nanoscale ; 10(18): 8451-8458, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29616690

RESUMO

Some articles have revealed that the electrodeposition of calcium phosphate (CaP) coatings entails a precursor phase, similarly to biomineralization in vivo. The chemical composition of the initial layer and its thickness are, however, still arguable, to the best of our knowledge. Moreover, while CaP and electrodeposition of metal coatings have been studied utilizing atom-probe tomography (APT), the electrodeposition of CaP ceramics has not been heretofore studied. Herein, we present an investigation of the CaP deposition on a gold substrate. Using APT and transmission electron microscopy (TEM) it is found that a mixture of phases, which could serve as transient precursor phases to hydroxyapatite (HAp), can be detected. The thickness of these phases is tens of nanometers, and they consist of amorphous CaP (ACP), dibasic calcium phosphate dihydrate (DCPD), and octacalcium phosphate (OCP). This demonstrates the value of using atomic-resolved characterization techniques for identifying the precursor phases. It also indicates that the kinetics of their transformation into the more stable HAp is not too fast to enable their observation. The coating gradually displays higher Ca/P atomic ratios, a porous nature, and concomitantly a change in its density.

6.
Ultramicroscopy ; 184(Pt A): 284-292, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29054043

RESUMO

Atom-probe tomography (APT) is a unique analysis tool that enables true three-dimensional (3-D) analyses with sub-nano scale spatial resolution. Recent implementations of the local-electrode atom-probe (LEAP) tomograph with ultraviolet laser pulsing have significantly expanded the research applications of APT. The small field-of-view of a needle-shaped specimen with a less than 100 nm diam. is, however, a major limitation for analyzing materials. The systematic approaches for site-specific targeting of an APT nanotip in a transmission electron microscope (TEM) of a thin sample are introduced to solve the geometrical limitations of a sharpened APT nanotip. In addition to "coupling APT to TEM", the technique presented here allows for targeting the preparation of an APT tip based on TEM observation of a much larger area than what is captured in the APT tip. The correlative methods have synergies for not only high-resolution structural analyses but also for obtaining chemical information. Chemical analyses in a TEM, both energy-dispersive X-ray spectroscopy (EDS) and electron energy-loss spectroscopy (EELS), are performed and compared with the APT chemical analyses of a carbide phase (M7C3) precipitate at a grain boundary in a Ni-based alloy. Additionally, a TEM image of a sharpened APT nanotip is utilized for calculation of the detection area ratio of an APT nanotip by comparison with a TEM image for precise tomographic reconstructions. A grain-boundary/carbide precipitate triple junction is used to attain precise positioning of an APT nanotip in an analyzed TEM specimen.

7.
Small ; 11(44): 5968-74, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26450564

RESUMO

The properties and growth processes of graphene are greatly influenced by the elemental distributions of impurity atoms and their functional groups within or on the hexagonal carbon lattice. Oxygen and hydrogen atoms and their functional molecules (OH, CO, and CO2 ) positions' and chemical identities are tomographically mapped in three dimensions in a graphene monolayer film grown on a copper substrate, at the atomic part-per-million (atomic ppm) detection level, employing laser assisted atom-probe tomography. The atomistic plan and cross-sectional views of graphene indicate that oxygen, hydrogen, and their co-functionalities, OH, CO, and CO2 , which are locally clustered under or within the graphene lattice. The experimental 3D atomistic portrait of the chemistry is combined with computational density-functional theory (DFT) calculations to enhance the understanding of the surface state of graphene, the positions of the chemical functional groups, their interactions with the underlying Cu substrate, and their influences on the growth of graphene.

8.
Sci Technol Adv Mater ; 14(1): 014204, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27877552

RESUMO

Deformation and work hardening behavior of Fe-17Mn-0.02C steel containing ε-martensite within the austenite matrix have been investigated by means of in situ microstructural observations and x-ray diffraction analysis. During deformation, the steel shows the deformation-induced transformation of austenite → ε-martensite → α'-martensite as well as the direct transformation of austenite → α'-martensite. Based on the calculation of changes in the fraction of each constituent phase, we found that the phase transformation of austenite → ε-martensite is more effective in work hardening than that of ε-martensite → α'-martensite. Moreover, reverse transformation of ε-martensite → austenite has also been observed during deformation. It originates from the formation of stacking faults within the deformed ε-martensite, resulting in the formation of 6H-long periodic ordered structure.

9.
Nano Lett ; 8(12): 4252-8, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19367964

RESUMO

We synthesized various hollow oxide nanoparticles from as-prepared MnO and iron oxide nanocrystals. Heating metal oxide nanocrystals dispersed in technical grade trioctylphosphine oxide (TOPO) at 300 degrees C for hours yielded hollow nanoparticles retaining the size and shape uniformity of the original nanocrystals. The method was highly reproducible and could be generalized to synthesize hollow oxide nanoparticles of various sizes, shapes, and compositions. Control experiments revealed that the impurities in technical grade TOPO, especially alkylphosphonic acid, were responsible for the etching of metal oxide nanocrystals to the hollow structures. Elemental mapping analysis revealed that the inward diffusion of phosphorus and the outward diffusion of metal took place in the intermediate stages during the etching process. The elemental analysis using XPS, EELS, and EDX showed that the hollow nanoparticles were amorphous metal oxides containing significant amount of phosphorus. The hollow nanoparticles synthesized from MnO and iron oxide nanocrystals were paramagnetic at room temperature and when dispersed in water showed spin relaxation enhancement effect for magnetic resonance imaging (MRI). Because of their morphology and magnetic property, the hollow nanoparticles would be utilized for multifunctional biomedical applications such as the drug delivery vehicles and the MRI contrast agents.

10.
J Am Chem Soc ; 127(15): 5662-70, 2005 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-15826206

RESUMO

Quantum-sized ZnS nanocrystals with quasi-spherical and rod shapes were synthesized by the aging reaction mixtures containing diethylzinc, sulfur, and amine. Uniform-sized ZnS nanorods with the average dimension of 5 nm x 21 nm, along with a small fraction of 5 nm-sized quasi-spherical nanocrystals, were synthesized by adding diethylzinc to a solution containing sulfur and hexadecylamine at 125 degrees C, followed by aging at 300 degrees C. Subsequent secondary aging of the nanocrystals in oleylamine at 60 degrees C for 24 h produced nearly pure nanorods. Structural characterizations showed that these nanorods had a cubic zinc blende structure, whereas the fabrication of nanorods with this structure has been known to be difficult to achieve via colloidal chemical synthetic routes. High-resolution TEM images and reaction studies demonstrated that these nanorods are formed from the oriented attachment of quasi-spherical nanocrystals. Monodisperse 5 nm-sized quasi-spherical ZnS nanocrystals were separately synthesized by adding diethylzinc to sulfur dissolved in a mixture of hexadecylamine and 1-octadecene at 45 degrees C, followed by aging at 300 degrees C. When oleic acid was substituted for hexadecylamine and all other procedures were unchanged, we obtained 10 nm-sized quasi-spherical ZnS nanocrystals, but with broad particle size distribution. These two different-sized quasi-spherical ZnS nanocrystals showed different proportions of zinc blende and wurtzite crystal structures. The UV absorption spectra and photoluminescence excitation spectra of the 5 nm ZnS quasi-spherical nanocrystals and of the nanorods showed a blue-shift from the bulk band-gap, thus showing a quantum confinement effect. The photoluminescence spectra of the ZnS nanorods and quasi-spherical nanocrystals showed a well-defined excitonic emission feature and size- and shape-dependent quantum confinement effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA