Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Physiol ; 102(12): 1635-1646, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28901662

RESUMO

NEW FINDINGS: What is the central question of this study? Endothelium-dependent flow-mediated dilatation (FMD) is impaired during acute (60 min) exposure to moderate hypoxia. We examined whether FMD is impaired to the same degree during exposure to milder hypoxia. Additionally, we assessed whether smooth muscle vasodilatory capacity [glyceryl trinitrate (GTN)-induced dilatation] is impaired during acute hypoxic exposure. What is the main finding and its importance? A graded impairment in FMD and GTN-induced dilatation was evident during acute (≤60 min) exposure to mild and moderate hypoxia. This study is the first to document these graded impairments, and provides rationale to examine the relationship between graded increases in sympathetic nerve activity with hypoxia on FMD and GTN-induced dilatation. Endothelium-dependent flow-mediated dilatation (FMD) and endothelium-independent dilatation [induced with glyceryl trinitrate (GTN)] are impaired at high altitude (5050 m), and FMD is impaired after acute exposure (<60 min) to normobaric hypoxia equivalent to ∼5050 m (inspired oxygen fraction âˆ¼0.11). Whether GTN-induced dilatation is impaired acutely and whether FMD is impaired during milder hypoxia are unknown. Therefore, we assessed brachial FMD at baseline and after 30 min of mild (end-tidal PO2 74 ± 2 mmHg) and moderate (end-tidal PO2 50 ± 3 mmHg) normobaric hypoxia (n = 12) or normoxia (time-control trial; n = 10). We also assessed GTN-induced dilatation after the hypoxic FMD tests and in normoxia on a separate control day (n = 8). Compared with the normoxic baseline, reductions during mild and moderate hypoxic exposure were evident in FMD (mild versus moderate, -1.2 ± 1.1 versus -3.1 ± 1.7%; P = 0.01) and GTN-induced dilatation (-2.1 ± 1.0 versus -4.2 ± 2.0%; P = 0.01); the declines in FMD and GTN-induced dilatation were greater during moderate hypoxia (P < 0.01). When allometrically corrected for baseline diameter and FMD shear rate under the curve, FMD was attenuated in both conditions (mild versus moderate, 0.6 ± 0.9 versus 0.8 ± 0.7%; P ≤ 0.01). After 30 min of normoxic time control, FMD was reduced (-0.6 ± 0.3%; P = 0.02). In summary, there was a graded impairment in FMD during mild and moderate hypoxic exposure, which appears to be influenced by shear patterns and incremental decline in smooth muscle vasodilator capacity (impaired GTN-induced dilatation). Our findings from the normoxic control study suggest the decline in FMD in acute hypoxia also appears to be influenced by 30 min of supine rest/inactivity.


Assuntos
Endotélio Vascular/fisiopatologia , Hipóxia/fisiopatologia , Músculo Liso Vascular/fisiopatologia , Vasodilatação , Doença Aguda , Adulto , Velocidade do Fluxo Sanguíneo , Artéria Braquial/efeitos dos fármacos , Artéria Braquial/fisiopatologia , Colúmbia Britânica , Feminino , Voluntários Saudáveis , Humanos , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Nitroglicerina/farmacologia , Fluxo Sanguíneo Regional , Fatores de Tempo , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Adulto Jovem
2.
Acta Physiol (Oxf) ; 206(2): 98-108, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22574769

RESUMO

AIM: To assess whether, under conditions permitting full evaporation, body heat storage during physical activity measured by partitional calorimetry would be lower with warm relative to cold fluid ingestion because of a disproportionate increase in evaporative heat loss potential relative to internal heat transfer with the ingested fluid. METHODS: Nine males cycled at 50% VO(2max) for 75 min at 23.6 ± 0.6 °C and 23 ± 11% RH while consuming water of either 1.5 °C, 10 °C, 37 °C or 50 °C in four 3.2 mL kg(-1) boluses. The water was administered 5 min before and 15, 30 and 45 min following the onset of exercise. RESULTS: No differences in metabolic heat production, sensible or respiratory heat losses (all P > 0.05) were observed between fluid temperatures. However, while the increased internal heat loss with cold fluid ingestion was paralleled by similar reductions in evaporative heat loss potential at the skin (E(sk) ) with 10 °C (P = 0.08) and 1.5 °C (P = 0.55) fluid, the increased heat load with warm (50 °C) fluid ingestion was accompanied by a significantly greater E(sk) (P = 0.04). The resultant calorimetric heat storage was lower with 50 °C water ingestion in comparison to 1.5 °C, 10 °C and 37 °C (all P < 0.05). In contrast, heat storage derived conventionally using thermometry yielded higher values following 50 °C fluid ingestion compared to 1.5 °C (P = 0.025). CONCLUSION: Under conditions permitting full sweat evaporation, body heat storage is lower with warm water ingestion, likely because of disproportionate modulations in sweat output arising from warm-sensitive thermosensors in the esophagus/stomach. Local temperature changes of the rectum following fluid ingestion exacerbate the previously identified error of thermometric heat storage estimations.


Assuntos
Ciclismo , Regulação da Temperatura Corporal , Ingestão de Líquidos , Exercício Físico , Temperatura Alta , Sudorese , Análise de Variância , Calorimetria , Temperatura Baixa , Frequência Cardíaca , Humanos , Masculino , Modelos Biológicos , Consumo de Oxigênio , Temperatura Cutânea , Termogênese , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA